Chandrani Sarkar; Subhadra Garai
Abstract
We report a novel biomimetic three-dimensional carbon fiber reinforced polymer hydroxyapatite nanocomposite having mechanical compressive strength (~116 MPa) and elastic modulus (~1.9 GPa) for load bearing orthopedic application. The synthetic route is very simple cost effective biomimetic process. It ...
Read More
We report a novel biomimetic three-dimensional carbon fiber reinforced polymer hydroxyapatite nanocomposite having mechanical compressive strength (~116 MPa) and elastic modulus (~1.9 GPa) for load bearing orthopedic application. The synthetic route is very simple cost effective biomimetic process. It does not require any binder/porogen for the synthesis of mechanically strong porous nanocomposite. Physicochemical properties of synthesized nanocomposite are systematically characterized by XRD, FT-IR, SEM and Universal Testing Machine. It revealed that only small fraction of carbon fiber increased the compressive strength (~116 MPa) and elastic modulus (~1.9 GPa) by 11-12 folds from unreinforced polymer hydroxyapatite nanocomposite (compressive strength~ 12MPa, Elastic modulus~ 0.33 GPa). Copyright © 2018 VBRI Press.
Meena .; Annu Sharma; Sanjeev Aggarwal; Pawan K. Sharma
Abstract
Bio-degradable polymers such as starch, chitosan, cellulose etc which are extracted from renewable resources are attracting increasing interest in the recent years due to their environmentally friendly nature, low cost and high availability. In the present work, synthesis of colloidal silver nanoparticles ...
Read More
Bio-degradable polymers such as starch, chitosan, cellulose etc which are extracted from renewable resources are attracting increasing interest in the recent years due to their environmentally friendly nature, low cost and high availability. In the present work, synthesis of colloidal silver nanoparticles and subsequently Ag-starch nanocomposite films were carried out via a green process. For synthesis of Ag nanoparticles water, soluble starch and fructose have been used as solvent, reducing agent and stabilizing agent respectively. The effect of varying concentration of colloidal Ag nanoparticles on the optical and structural properties of starch was investigated. The structural analysis of the nanocomposites was carried out using Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Size of the Ag nanoparticles from TEM micrograph comes out to be 10.75 ± 0.8 nm in the starch matrix. UV-visible absorption was further utilized to ascertain various optical constants like optical energy gap, Urbach’s energy, optical conductivity etc. The optical energy gap of starch decreases from 4.08 eV to 2.21 eV for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles and the Urbach’s energy increases from 0.77 eV to 1.37 eV. Copyright © 2017 VBRI Press.
Anupma Sharma; Vijay Kumar; Saurav Kumar; Pooja D; Sudeshna Bagchi; Amol P. Bhondekar
Abstract
In this work, we present the first investigations of Mn3O4 nanoparticles doped in polyaniline (PANI) matrix for gas sensing application. PANI/Mn3O4 nanocomposite (NC) was synthesized by facile one step reduction method with varied dopant concentrations (1mM and 3mM) of synthesized Mn3O4 nanoparticles ...
Read More
In this work, we present the first investigations of Mn3O4 nanoparticles doped in polyaniline (PANI) matrix for gas sensing application. PANI/Mn3O4 nanocomposite (NC) was synthesized by facile one step reduction method with varied dopant concentrations (1mM and 3mM) of synthesized Mn3O4 nanoparticles followed by its characterization for optical, structural, morphological, thermal and electrical properties. Optical characterization by UV-Vis and FT-IR confirmed the doping of Mn3O4 in polymer matrix. TGA analysis showed improvement in the thermal stability of the NC. SEM images portrayed agglomerated morphology of PANI whereas the NC depicted fibre-like structures symptomatic of more porosity. Gas sensing behavior was investigated towards acetone, ethanol and benzaldehyde vapours. The sensor with 3mM dopant concentration exhibited significant sensing response with a sensitivity of 1.5 at room temperature towards acetone vapour, which can be attributed to the controlled and improved properties at the interface via molecular and supramolecular interactions. The synthesized NC has a potential use as acetone sensor with fast response and recovery. Copyright © 2017 VBRI Press
Arti I. Nandapure; Subhash B. Kondawar; Bharti I. Nandapure; Manish M. Choudhari
Abstract
Polyaniline/ferrite nanocomposites have attracted increasing attention because they offer the possibility of a new generation of nanostructure materials with advanced applications like electromagnetic interference shielding, rechargeable batteries, corrosion devices due to their flexibility, inexpensive ...
Read More
Polyaniline/ferrite nanocomposites have attracted increasing attention because they offer the possibility of a new generation of nanostructure materials with advanced applications like electromagnetic interference shielding, rechargeable batteries, corrosion devices due to their flexibility, inexpensive and easy of synthesis. Polyaniline (PANI) containing MFe2O4 were prepared by in-situ polymerization of aniline in aqueous solution (Where M-represent divalent metal cation, M2+ = Ni2+). PANI reduces the agglomeration of nanosized nickel ferrite (NiFe2O4) particles which is good for the stabilization of nanoparticles. The investigation of structural, morphological and optical properties was carried out for the synthesized PANI/NiFe2O4 nanocomposites using X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Ultraviolet visible spectrophotometer (UV-Vis). XRD revealed that the structure of NiFe2O4 nanoparticles is spinel with space group Fd3m and crystallite size 14 nm. Lattice parameter was found to increases with NiFe2O4 concentration in PANI and this may be due to the larger ionic radius of the Ni2+ ion. XRD pattern of PANI/NiFe2O4 nanocomposites at different ferrite molar percent are just the superposition of those of polyaniline and ferrite nanoparticles. Transmission electron microscopy of PANI/NiFe2O4 nanocomposites show increase in particle size over pure a NiFe2O4 nanoparticles which is relevant with XRD results. UV-Visible absorption spectroscopy of PANI/NiFe2O4 nanocomposites shows two absorption bands in range of 300-350 nm and 600-650 nm which reflects interaction of ferrite nanoparticles with PANI. Copyright © 2017 VBRI Press.