Authors

1 Material Science and Technology, CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India. Department of Applied Chemistry, Indian School of Mines, Dhanbad-826004, India

2 Material Science and Technology, CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India.

Abstract

We report a novel biomimetic three-dimensional carbon fiber reinforced polymer hydroxyapatite nanocomposite having mechanical compressive strength (~116 MPa) and elastic modulus (~1.9 GPa) for load bearing orthopedic application. The synthetic route is very simple cost effective biomimetic process. It does not require any binder/porogen for the synthesis of mechanically strong porous nanocomposite. Physicochemical properties of synthesized nanocomposite are systematically characterized by XRD, FT-IR, SEM and Universal Testing Machine. It revealed that only small fraction of carbon fiber increased the compressive strength (~116 MPa) and elastic modulus (~1.9 GPa) by 11-12 folds from unreinforced polymer hydroxyapatite nanocomposite (compressive strength~ 12MPa, Elastic modulus~ 0.33 GPa). Copyright © 2018 VBRI Press.

Keywords

1.Mistry, A. S.; Mikos, A.G.; Tissue engineering strategies for bone
regeneration.Regen. Med.,2005, 11, 1.

DOI:10.1016/j.car
2.Hing, K.A.; Bone repair in the twenty-first century: biology,
chemistry or engineering? Philos Tans A Math Phys Eng Sci,2004,
362, 2821.

DOI:10.1098/rsta.2004.14663.Kutz, M.; Standard handbook of biomedical engineering and design.
McGraw-Hill, 2003

ISBN:9780071356374

4.
Depan, D.; Biodegradable Polymeric Nanocomposites: Advances in
Biomedical Applications.
CRC Press, 2015
ISBN: 9781482260519
5.Hule, R. A.; Pochan, D. J.; Polymer Nanocomposites for Biomedical
Applications. MRS Bulletin, 2007, 32, 354.

DOI:10.1557/mrs2007.235
6.Roeder, R. K.; Converse, G. L.; Kane, R. J.; Yue, W.;
Hydroxyapatite-Reinforced polymer Biocomposites for synthetic
bone substitutes. JOM, 2008, 60, 38.

DOI: 10.1007/s11837-008-0030-2
7.Bonfield, W.; Grynpas, M. D.; Tully, A. E.; Bowman, J.; Abram, J.;
Hydroxyapatite reinforced polyethylene-a mechanically compatible
implant matetrial for bone replacement. Biomaterials1981, 2, 185.

DOI:10.1016/0142-9612(81)90050-8
8.Kong, Y. M.; Kim, S.; Kim, H. E.; Lee, I. S.; Reinforcement of
hydroxyapatite bioceramic by addition of ZrO2coated with Al2O3. J.
Am. Ceram. Soc.1999, 82, 2963.

DOI:10.1111/j.1151-2916.1999.tb02189.x
9.Garai, S.; Sinha, A.; Biomimetic nanocomposites of carboxymethyl
cellulose-hydroxyapatite:novel three dimensional load bearing bone
grafts.Colloids Surf., B,2014, 115, 182.

DOI:10.1016/j.colsurfb.2013.11.042
10.Choi, J. W.; Kong, Y. M.; Kim, H. E.; Lee, I. S.; Reinforcement of
hydroxyapatite bioceramicsby addition of Ni3Al and Al2O3. J. Am.
Ceram. Soc.1998, 81, 1743.

DOI:10.1111/j.1151-2916.1998.tb02543.x
11.Hench, L.L.; Bioceramics. J. Am. Ceram. Soc.1998, 81, 1705.

DOI:10.1111/j.1151-2916.1998.tb02540.x
12.Ehsani, N.; Ruys, A.J., Sorrell, C.C.; Thixotropic casting of fecralloy
fiber reinforced hydroxyapatite, Key eng. Mater.1995, 104-107, 373.

DOI:10.4028/www.scientific.net/KEM.104-107.373
13.Klug, H. P.; Alexander, L. E.; X-ray Diffraction Procedures for
polycrystalline and Amorphous materials. John Wiley & Sons, New
York, 1947.

ISBN:9780471493693