Document Type : Research Article

Authors

1 Department of Physics, Kurukshetra University, Kurukshetra 136119, India

2 Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India

Abstract

Bio-degradable polymers such as starch, chitosan, cellulose etc which are extracted from renewable resources are attracting increasing interest in the recent years due to their environmentally friendly nature, low cost and high availability. In the present work, synthesis of colloidal silver nanoparticles and subsequently Ag-starch nanocomposite films were carried out via a green process. For synthesis of Ag nanoparticles water, soluble starch and fructose have been used as solvent, reducing agent and stabilizing agent respectively. The effect of varying concentration of colloidal Ag nanoparticles on the optical and structural properties of starch was investigated. The structural analysis of the nanocomposites was carried out using Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Size of the Ag nanoparticles from TEM micrograph comes out to be 10.75 ± 0.8 nm in the starch matrix. UV-visible absorption was further utilized to ascertain various optical constants like optical energy gap, Urbach’s energy, optical conductivity etc. The optical energy gap of starch decreases from 4.08 eV to 2.21 eV for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles and the Urbach’s energy increases from 0.77 eV to 1.37 eV.  Copyright © 2017 VBRI Press.

Keywords

1.Schmid, G.; Nanoparticles: From Theory to Application, Wiley,
2004.

2.Kreibeg, U.;Vollmer, M.;Optical Properties of Metal Clusters,
Springer, 1995.

3.
Sharma, R.; Bhalerao, S.; Gupta, D.; Org. Electron., 2016, 33, 274.
DOI:10.1016/j.orgel.2016.03.030

4.Zhou, C.; Opt. Lasers Eng., 2012, 50, 1592.

DOI:10.1016/j.optlaseng.2012.05.020

5.Raj, D. R.; Prasanth, S.; Vineeshkumar, T. V.; Sudarsanakumar,
C.;
Sens. Actuators B, 2015, 224, 600.
DOI: 10.1016/j.snb.2015.10.106

6.Joseph,S.; Mathew, B.;Mater. Sci. Eng., B, 2015, 195, 90.

DOI: 10.1016/j.mseb.2015.02.007

7.Chevirona, P.; Gouanvéa, F.; Espuche, E.; Carbohydr. Polym.,
2015, 134, 635.

DOI:10.1016/j.carbpol.2015.07.067

8.Pinto, R. J.B.; Fernandes,S. C.M.; Freire, C. S.R.; Sadocco,P.;
Causio,J.; Neto, C. P.; Trindade, T.; Carbohydr. Res., 2012, 348,
77.

DOI: 10.1016/j.carres.2011.11.009

9.Bozanic, D. K.; Djokovic,V.; Blanusa,J.; Nair,P. S.; Zeorges,M.
K.;Radhakrishnan, T.; Eur. Phys. J. E,2007, 22, 51.

DOI: 10.1140/epje/e2007-00008-y

10.Bastioli, C.; Handbook of Biodegradable Polymers, Rapra
Technology Limited, UK.

11.Yoksan,R.; Chirachanchai, S.; Mater. Sci. Eng. C,2010, 30, 891.

DOI:10.1016/j.msec.2010.04.004

12.Cheng, F.; Betts, J.W.; Kelly, S.M.; Hector, A.L.; Mater. Sci.
Eng. C, 2015, 46, 530.

DOI:10.1016/j.msec.2014.10.041
13.Bashir, O.; Hussain, S.; AL-Thabaiti, S.A.;Khan, Z.;Spectrochim.
Acta Mol. Biomol. Spectrosc., 2015, 140, 265.

DOI:10.1016/j.saa.2014.12.065

14.Hebeish, A.; Shaheen, Th. I. ; El-Naggar, M. E.; Int. J. Biol.

Macromol., 2016, 87, 70.

DOI:10.1016/j.ijbiomac.2016.02.046

15.
Hassanien, A.S.; AKL, A.A.; Superlattices Microstruct., 2016, 89,
153.

DOI:10.1016/j.spmi.2015.10.044

16.Chevirona, P.; Gouanvéa, F.; Espuche, E.; Carbohydr. Polym.,
2014, 108, 291.

DOI:10.1016/j.carbpol.2014.02.059

17.Tagad, C. K.; Dugasani, S. R.; Aiyer, R.; Park, S.; Kulkarni, A.;
Sabharwal, S.; Sens. Actuators, B, 2013, 183, 144

DOI: 10.1016/j.snb.2013.03.106
18.
Pandey, S.; Goswami, G. K.; Nanda, K. K.; Int. J. Biol.
Macromol.
, 2012, 51, 583.
DOI:10.1016/j.ijbiomac.2012.06.033

19.Davis, E.; Mott, N.F.;Electronic Processes in Non-Crystalline
Materials, OxfordUniversity Press Inc., USA, 1970.

20.Krstic, J.;Spasojevic, J.; Radosavljevic, A.; Siljegovc, M.;
Popovic Z. K.; Radiat. Phys. Chem.;2014, 96,158.

DOI:10.1016/j.radphyschem.2013.09.013

21.Agarwal, S.; Saraswat, V. K.; Opt. Mater., 2015, 42, 335.

DOI: 10.1016/j.optmat.2015.01.024
22.Devi, U. C.; Sharma, A. K.;Rao, V. V. R. N.;Mater. Lett.2002,
56, 167.

DOI:10.1016/S0167-577X(02)00434-2

23.Mahmoud, K.H.; Spectrochim. Acta, Part A: Mol. Biomol.
Spectros.,2015, 138,434.

DOI: 10.1016/j.saa.2014.11.074

24.Urbach,F.; Phys. Rev.1953, 92, 1324.

DOI:10.1103/PhysRev.92.1324

25.
Gherbi, R.; Bessekhouad, Y.; Trari, M.; J. Phys. Chem. Solids,
2016
, 89, 69.
DOI: 10.1016/j.jpcs.2015.10.019

26.Bouarissa, N.; Gueddim, A.; Siddiqui, S.A.; Boucenna, M.; Al-
Hajry, A.; Superlattices. Microstruct.,2014, 72, 319.

DOI:10.1016/j.spmi.2014.05.010

27.
Yang, C. H.; Ao, Z. M.; .Li, Q. F.; .Jiang, J. J.;Opt. Commun,
2015
, 338, 145.
DOI:10.1016/j.optcom.2014.09.066