Document Type : Research Article

Authors

1 Materials Science Lab, Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, India

2 Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar125001, India

Abstract

Barium substituted bismuth ferrite (Bi0.8Ba0.2FeO3) was synthesized using ethylene glycol based sol-gel method followed by heat treatment at 800°C for 15 min. In order to study the effect of barium substitution on structural parameters the rietveld refinement of the sample was performed. Structural transition from the rhombohedral perovskite (ABO3) crystal structure to pseudo-cubic has been confirmed. Ba substitution at Bi site suppresses the secondary phases of BiFeO3 such as Bi2Fe4O9, Bi25FeO39 etc. The crystallite size of the prepared barium substituted BiFeO3 (BBFO) nano-multiferroic calcined at 800°C is found to be ~ 20 nm.  The functional groups in the calcined sample were identified by FTIR analysis. TG-DSC analysis of the sample has also been performed. It is expected that structural changes made by barium in BiFeO3 would also affect its magnetic behavior. Copyright © 2017 VBRI Press.

Keywords

1.Kimura, T.; Sekio, Y.; Nakamura, H.; Siegrist, T, Ramirez, A.P.;
Nat.
Mater., 2008, 7, 291.
DOI:10.1038/nmat2125.

2.Fu,C.;Sun, F.; Hao,J.;Gao, R.;Cai,W.; Chen, G.;Deng, X.; J.
Mater. Sci: Mater. Electron, 2016, 27, 8242.

DOI:10.1007/s10854-016-4830-9.

3.Coey, J.M.D.; Douvalis, A.P.; Fitzgerald, C.B.; Venkatesan, M.;
Appl. Phys. Lett., 2004, 84, 1332.

DOI:
10.1063/1.1650041.
4.Khomksii D. I. (Eds.), Transition metal compounds, Cambridge
university press, United Kingdom, 2014.

5.Dai, Z.; Akishige, Y.; J. Phys. D: Appl. Phys., 2010, 43, 445403.

DOI:
10.1088/0022-3727/43/44/445403.
6.Zhang, H.; Liu, W.F.; Wu, P.; Hai, X.; Wang, S.Y.; Liu, G. Y.;
Rao, G.H.; J Nanopart. Res., 2014,16, 2205.

DOI:10.1007/s11051-013-2205-1.

7.Han, S.H.; Kim, K.S.; Kim, H.G.; Lee,H.G.; Kang, H.W.; Kim,
J.S.; Cheon, C. I.; Ceram. Int., 2010, 36, 1365.

DOI:
10.1016/j.ceramint.2010.01.020.
8.
Das, N.; Majumdar, R.; Sen, A.; Maiti, H.S.; Mater. Lett., 2007,
61, 2100.

DOI:
10.1016/j.matlet.2006.08.026.
9.Singh, P.; Jung, J.H.; Physica B, 2010, 405, 1086.

10.DOI:10.1016/j.physb.2009.11.007.

11.Bhushan, B.; Basumallick, A.; Bandopadhyay, S.K.;
Vasanthacharya, N.Y.; J. Phys.D:Appl. Phys., 2009, 42, 065004.
DOI:
10.1088/0022-3727/42/6/065004.
12.Kumar, A.; Yadav, K.L.; Physica B, 2010, 405, 4650.
DOI:
10.1016/j.physb.2010.08.054.
13.Cheng, G.F.; Ruan, Y.J.; Huang, Y.H.; Wu, X.S.; J. Alloys
Compd., 2013, 566, 235.

DOI:
10.1016/j.jallcom.2013.02.138.
14.
Kumar, P.; Shankhwar, N.; Srinivasan, A.; Kar, M.; J. Appl. Phys.,
2015
, 117, 194103.
DOI:
10.1063/1.4921433.
15.Kaczmarek, W.; Pajak, Z.; Solid State Commun., 1975, 17, 807.
DOI:
10.1016/0038-1098(75)90726-7