Document Type : Research Article
Authors
1 Department of Physics, Katwa College, Katwa, West Bengal 713130, India.
2 Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India.
3 Integrated Science Education and Research Center, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India.
Abstract
The electrochemical performances of electrochemically synthesized polyanilinenano (nPANI) material as cathode vs. zinc metal as anode is investigated.The nPANI particle is synthesized by galvanostatic electro-oxidation of aniline from interfacial solution on metal electrode surface and characterized by UV-Visible, FTIR, powder XRD and TEM. The material is crystalline nano spheres with meso pores among them, uniformly distributed and dispersed. The sizes of the particles lie in 50-100 nm region. This nPANI is used as cathode material in Zn│(NH4)2SO4, ZnSO4(aq)│nPANI battery and its electrochemical performances is investigated by galvanostatic charge-discharge cycling. The electrochemical cell exhibits an open circuit potential of 1.3 volts and a discharge plateau with an average discharge potential of 1.1 volts. The maximum discharge capacity observed is 250 Ah.Kg-1.Copyright © 2017 VBRI Press.
Keywords
25-09-2016.
2.Jarvie, H.; Nanoparticle;
http://www.britannica.com/science/nanoparticle, Accessed 26-06-
2015.
3.Cao, G.(ed) Nanostructures and Nanomaterials: Synthesis,
Properties and Applications; Imperial College: 2004.
4.Saleh, T.A.; Gupta, V.K.(eds); Nanomaterial and Polymer
Membranes: Synthesis, Characterization, and Applications;
Elsevier: 2016.
5.Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H.; Prog. Polym. Sci.,
2009, 34, 783.
DOI: 10.1016/j.progpolymsci.2009.04.003
6.Gallon, B.J.; Kojima, R.W.; Kaner, R.B.; Diaconescu, P.L.; Angew.
Chem. Int. Ed., 2007, 46, 7251.
DOI: 10.1002/anie.200701389
7.Li, D.; Huang, J.; Kaner, R.B.; Acc. Chem. Res., 2009, 42, 135.
DOI: 10.1021/ar800080n
8.Wei, H.; Yan, X.; Wu, S.; Luo, Z.; Wei, S.; Guo, Z.; J. Phys. Chem.
C, 2012, 116, 25052.
DOI: 10.1021/jp3090777
9.Hyder, M.N.; Lee, S.W.; Cebeci, F.Ç.; Schmidt, D.J.; Shao-Horn,
Y.; Hammond, P.T.; ACS Nano, 2011, 5, 8552.
DOI: 10.1021/nn2029617
10.Wang, G.; Zhang, Y.; Zhou, F.;Sun, Z.; Huang, F.; Yu, Y.; Chen,
L.; Pan, M.;J. EnergyStorage, 2016, 7, 99.
DOI: 10.1016/j.est.2016.05.011
11.Rao, J.P.; Geckeler, K.E.; Prog. Polym. Sci., 2011, 36, 887.
DOI: 10.1016/j.progpolymsci.2011.01.001
12.Kumari, A.; Yadav, S.K.; Yadav, S.C.; Colloids Surf. B
Biointerfaces, 2010, 75, 1.
DOI: 10.1016/j.colsurfb.2009.09.001
13.Vauthier, C.; Bouchemal, K.; Pharm. Res., 2008, 26, 1025.
DOI: 10.1007/s11095-008-9800-3
14.Bhandari, S.; Khastgir, D.; Polymer, 2015, 81, 62.
DOI: 10.1016/j.polymer.2015.10.015
15.Bhandari, S.; Khastgir, D.; Int. J. Polym. Mater. Polym. Biomater.,
2016,65, 543.
DOI: 10.1080/00914037.2016.1149842
16.Malinauskas, A.; Malinauskiene, J.; Ramanavicius, A.; Nanotech.,
2005, 16, R51.
DOI:10.1088/0957-4484/16/10/R01
17.Xiao, R.; Cho, S.I.; Liu, R.; Lee, S.B.; J. Am. Chem. Soc., 2007,
129, 4483.
DOI: 10.1021/ja068924v
18.Kinyanjui, J.M.; Wijeratne, N.R.; Hanks, J.; Hatchett, D.W.;
Electrochim. Acta, 2006, 51, 2825.
DOI: 10.1016/j.electacta.2005.08.013
19.Bhadra, S.; Singha, N.K.; Khastgir, D.; J. Appl. Polym. Sci., 2007,
104, 1900.
DOI: 10.1002/app.25867
20.Zhang, X.; Chan-Yu-King, R.; Jose, A.; Manohar, S.K.; Synth. Met.,
2004, 145, 23.
DOI: 10.1016/j.synthmet.2004.03.012
21.Wang, J. G.; Yang, Y.; Huang, Z. H.; Kang, F.; J. Power Sources,
2012, 204, 236.
DOI: 10.1016/j.jpowsour.2011.12.057
22.Sawall, D.D.; Villahermosa, R.M.; Lipeles, R.A.; Hopkins, A.R.;
Chem. Mater., 2004, 16, 1606.
DOI: 10.1021/cm0352908
23.Millick, N.M.; University of Nevada, L.V.(eds); Synthesis and
Characterization of Electrochemical Polyaniline/palladium
Composites; University of Nevada, Las Vegas: 2008
24.Chen, C.; Hong, X.; Chen, A.; Xu, T.; Lu, L.; Lin, S.; Gao,
Y.;Electrochim. Acta, 2016, 190, 240.
DOI: 10.1016/j.electacta.2015.12.125
25.Xia, Y.; Zhu, D.; Si, S.; Li, D.; Wu, S.; J. Power Sources, 2015,
283, 125.
DOI: 10.1016/j.jpowsour.2015.02.123
26.Li, G. R.; Feng, Z. P.; Zhong, J. H.; Wang, Z. L.; Tong, Y.X.;
Macromolecules, 2010, 43, 2178.
DOI: 10.1021/ma902317k
DOI: 10.1002/pi.1995.210370201
28.Stejskal, J.; Kratochvíl, P.; Radhakrishnan, N.; Synth. Met., 1993,
61, 225.
DOI: 10.1016/0379-6779(93)91266-5
29.Pruneanu, S.; Veress, E.; Marian, I.; Oniciu, L.; J. Mater. Sci., 34,
2733.
DOI: 10.1023/a:1004641908718
30.Akbarinezhad, E.; Ebrahimi, M.; Sharif, F.; Synth. Met., 2012, 162,
1879.
DOI: 10.1016/j.synthmet.2012.07.023
31.Trchová, M.; Stejskal, J.; Prokeš, J.; Synth. Met., 1999, 101, 840.
DOI: 10.1016/S0379-6779(98)01310-1
32.Hatchett, D.W.; Josowicz, M.; Janata, J.; J. Phys. Chem. B, 1999,
103, 10992.
DOI: 10.1021/jp991110z
33.Zhang, Z.; Wei, Z.; Wan, M.; Macromolecules, 2002, 35, 5937.
DOI: 10.1021/ma020199v
34.Wang, Y.; Jing, X.; Kong, J.; Synth. Met., 2007, 157, 269.
DOI: 10.1016/j.synthmet.2007.03.007
35.Bhadra, S.; Khastgir, D.; Polym. Test., 2008, 27, 851.
DOI: 10.1016/j.polymertesting.2008.07.002
36.Sydulu Singu, B.; Srinivasan, P.; Pabba, S.; J. Electrochem. Soc.,
2011, 159, A6.
DOI: 10.1149/2.036201jes
37.Jiao, S.; Tu, J.; Fan, C.; Hou, J.; Fray, D.J.; J. Mater. Chem., 2011,
21, 9027.
DOI: 10.1039/C1JM11064K
38.Wang, Y.G.; Li, H.Q.; Xia, Y.Y.; Adv. Mater., 2006, 18, 2619.
DOI: 10.1002/adma.200600445
39.Ponomarenko,A.T.; Shevchenko, V.G.; Kryazhev, Y.G.;
Kestelman, V.N.; Int. J. Polym. Mater. Polym. Biomater., 1994, 25,
201.
DOI: 10.1080/00914039408029338
40.Li, S.; Zhang, G.; Jing, G.; Kan, J.; Synth. Met., 2008, 158, 242.
DOI: 10.1016/j.synthmet.2008.01.008
41.Mirmohseni, A.; Solhjo, R.; Eur. Polym. J., 2003, 39, 219.
DOI: 10.1016/S0014-3057(02)00202-1
42.Rahmanifar, M.S.; Mousavi, M.F.; Shamsipur, M.; J. Power
Sources, 2002, 110, 229.
DOI: 10.1016/S0378-7753(02)00260-4
43.Karami, H.; Mousavi, M.F.; Shamsipur, M.; J. Power Sources,
2003, 117, 255.
DOI: 10.1016/S0378-7753(03)00168-X