Document Type : Research Article
Authors
1 Department of Physics, Arul Anandar College (Autonomous), Karumathur, Madurai 625 514, India
2 UGC DAE Consortium for Scientific Research, University campus, Khandwa Road, Indore 452001, India
Abstract
Microwave assisted co-precipitation method is used to synthesize copper oxide nanoparticles from various concentrations of CuCl2.2H2O (0.1 M - 0.5 M) precursors. Both CuO and Cu2O phases are observed from X-ray diffraction (XRD) pattern and further confirmed from Energy Dispersive X-ray Analysis (EDX) and selected area electron diffraction (SAED) data. The particle size of 43 to 27 nm determined from XRD data using Scherrer formula is in good relation with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The existence of reasonably uniform size and shape is clear from SEM. The band gaps determined from the UV-Visible absorption peaks and vibrational modes observed from Micro-Raman Scattering (MRS) analysis further confirm the presence of CuO and Cu2O phases. These results are also related to electrical conductivity at low temperatures which illustrate different types of conduction mechanisms. The samples show semiconducting behavior with improved electrical conductivity. Finally, the material is proposed to have applications in designing gas sensors and also in regulating electrical conductivity in drug delivery systems. Copyright © 2017 VBRI Press.
Keywords
Technol.2011, 207, 378.
DOI: 10.1016/j.powtec.2010.11.022
2.Abaker, M.; Ahmad, U.; Baskoutas, S.; Kim,S. H.; Hwang, S. W;
J. Phys. D: Appl. Phys.2011, 44,155405.
DOI:10.1088/0022-3727/44/15/155405
3.Chunhua, W.; Yixing, Y.; Bo, T.; Baoyou, G; Cryst. Eng.
Comm.2012, 14, 3677.
DOI: 10.1039/C2CE06707B4.Rashad, M.M.;Rayan, D.A.;Ramadan, A.A; J. Mater. Sci.:
Mater. Electron.2013, 24, 2742.
DOI:10.1007/s10854-013-1164-8
5.Luwang, M. N; Appl. Surf. Sci.2014, 290, 332.
DOI:10.1016/j.apsusc.2013.11.077
6.Singh, P. L.; Luwang, M. N.; Srivastava, S. K; New J. Chem.2014,
38, 115.
DOI:10.1039/C3NJ00759F
7.Stuart, R. T.; Pattanasattayavong, P.; Anthopoulos, T. D; Chem.
Soc. Rev.2013, 42, 6910.
DOI:10.1039/C3CS35402D
8.Javier, V; J. Phys. Chem. Lett.2013, 4, 653.
DOI:10.1021/jz302100r
9.Dipranjan, L.; Arindam, P.; Sourav, C.; Sandip, K. D.; Somenath,
R.; Panchanan, P.; Parimal, K; RSC Adv.2015, 5, 68169.
DOI: 10.1039/c5ra08110f
10.Perlman, O.; Iris, S. W.; Haim, A; Phys. Med. Biol.2015, 60, 5767.
DOI:10.1088/0031-9155/60/15/5767
11.Ayekpam, B.; Dinesh, S. M.; Narayan, C. T.; Damayanti, D. M.;
Rajen, S. N.; Meitram, N. L; Chin. Chem. Lett.2014, 25, 1615.
DOI: 10.1016/j.cclet.2014.07.014
12.Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M; J.
Phys. Chem. Solids, 2012, 73, 1320.
DOI:10.1016/j.jpcs.2012.07.005
13.Juan, W.; Wei-De, Z; Electrochim. Acta,2011,56, 7510.
DOI:10.1016/j.electacta.2011.06.102
14.Ren, G.; Hu, D.; Cheng, E. W. C; Int. J. Antimicrob. Agents, 2009,
33, 587.
DOI: 10.1016/j.ijantimicag.2008.12.004
15.Henrich; Victor; Cox, P. A; The Surface Science of Metal Oxides,
Cambridge University Press, 2000.
ISBN:0521566878
16.Zhipeng, C.; Jiming, X.; Hui, Z.; Xiaozhong, C.; Juan, S; Mater.
Lett.2011, 65, 2047.
DOI:10.1016/j.matlet.2011.04.021
17.Wang, L.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y;
Nanoscale, 2012, 4, 6850.
DOI:10.1039/c2nr31898a
18.Manoj, D.; Ranjith Kumar, D.; Santhanalakshmi, J; Appl.
Nanosci.2012, 2, 223.
DOI:10.1007/s13204-012-0093-9
19.Anita Sagadevan, E.; Joon Kang, D; Nanoscale Res. Lett.2012, 7,
70.
DOI:10.1186/1556-276X-7-70
20.Hong, X.; Wang, G.; Zhu, W.; Shen, X.; Wang, Y; J. Phys. Chem.
C, 2009, 113, 14172.
DOI:10.1021/jp9039786
21.Qing, Y.; Hongwen, H.; Ru, C.; Peng, W.; Hangsheng, Y.;
Mingxia, G.; Xinsheng, P.; Zhizhen, Y; Nanoscale, 2012, 4, 2613.
DOI:10.1039/c2nr30135k
22.Reda, M. M.; Farid, A. H.; Ahmed, S; Ceram. Int.2014, 40,2127.
DOI: 10.1016/j.ceramint.2013.07.129
23.Wang, H.; Shen, Q.; Xinping, L.; Fenglin, L; Langmuir, 2009, 25,
3152.
DOI: 10.1021/la803276z
24.Wang, Z.; Xiao, Y.; Xiaobiao, C.; Cheng, P.; Wang, B.; Gao, Y.;
Xiaowei, L.; Yang, T.; Zhang, T.; Geyu, L; ACS Appl. Mater.
Interfaces, 2014, 6, 3888.
DOI: 10.1021/am404858z
25.Zhou, B.; Wang, H.; Liu, Z.; Yang, Y.; Huang, X.; Lü, Z.; Sui, Y.;
Wenhui, S; Mater. Chem. Phys.2011,126, 847.
DOI:10.1016/j.matchemphys.2010.12.030
26.Ling, X.; Hai-Yan, X.; Wang, F.; Feng-Jun, Z.; Ze-Da, M.; Zhao,
W.; Won-Chun, O; J. Korean Ceram. Soc.2012, 49, 151.
DOI:10.4191/kcers.2012.49.2.151
27.Topnania, N.; Kushwaha, S.; Athara, T; Int.J. Green
Nanotechnology: Material Science and Engineering, 2010, 1,
M67.
DOI:10.1080/19430840903430220
28.Yanyan, X.; Dairong,.C.; Xiuling, J.; Keyan, X; J. Phys. Chem. C,
2007, 111, 16284.
DOI:10.1021/jp075358x
29.Karthik, K.; Victor Jaya, N.; Kanagaraj, M.; Arumugam, S; Solid
State Commun.2011, 151, 564.
DOI: 10.1016/j.ssc.2011.01.008
30.Bouazizi1, N.; Bargougui, R.; Oueslati, A.; Benslama, R; Adv.
Mater. Lett.2015, 6, 158.
DOI:10.5185/amlett.2015.5656
31.Lijuan, W.; Qing, Z.; Guling, Z.; Yujie, L.; Baoshun, W.; Weiwei,
Z.; Bo, L.; Wenzhong, W; Mater. Lett. 2012, 74, 217.
DOI: 10.1016/j.matlet.2012.01.123
32.Chengfa, L.; Yin Hou, Y.; Naiying, F.; Yuan, F.; Yanmei, S.;
Meng, Q; Solid State Commun.2010, 150, 585.
DOI: 10.1016/j.ssc.2009.12.039
33.Yunling, Z.; Yan, L.; Zhang, N.; Xiulin , L; Bull. Mater. Sci.2011,
34, 967.
DOI: 10.1007/S12034-011-0223-0
34.Zheng, Z.; Huang, B.; Wang, Z; Guo, M; Xiaoyan, Q.; Zhang, X.;
Wang, P.; Dai, Y; J. Phys. Chem. C, 2009, 113, 14448.
DOI: 10.1021/jp904198d
35.Min, Y. L.; Wang, T.; Chen, Y. C;Appl. Surf. Sci.2010, 257, 132.
DOI: 10.1016/j.apsusc.2010.06.049
36.Li, Q. L.; Yong, W; J. Mater. Chem.2011, 21, 17916.
DOI: 10.1039/C1JM12589C
37.Dar, M. A.; Ahsanulhaq, Q.; Kim, Y. S.; Sohn, J. M.; Kim, W. B.;
Shin, H. S; Appl. Surf. Sci.2009, 255, 6279.
DOI: 10.1016/j.apsusc.2009.02.002
38.Bilecka, I.; Niederberger, M; Nanoscale, 2010, 2, 1358.
DOI: 10.1039/B9NR00377K
39.Luna, I. Z.; Hilary, L. N.; Sarwaruddin Chowdhury, A. M.; Gafur,
M. A.; Khan, N.; Ruhul Khan, A; Open Access Library Journal,
2015, 2, e1409.
DOI: 10.4236/oalib.1101409
40.Tamgadge, Y. S.; Atkare, D. V.; Mahure, M. A.; Gedam, P. P.;
Muley, G. G; JAAST: Material Science, 2014, 1, 153.
Colloid Interface Sci.2010, 348, 303.
DOI:10.1016/j.jcis.2010.04.052
42.Xia, C.; Xiaolan, C.; Ning, W.; Lin, G; Anal. Chim. Acta.2011,
691, 43.
DOI:10.1016/j.aca.2011.02.037
43.Gao, D.; Zhang, J.; Zhu, J.; Jing, Q.; Zhang, Z.; Wenbo, S.;
Huigang, S.; Xue, D; Nanoscale Res. Lett.2010, 5, 769.
DOI: 10.1007/s11671-010-9555-8
44.Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.;
Tanane, O.; Ihssane, B; Appl. Nanosci.2014, 4, 571.
DOI:10.1007/s13204-013-0233-x
45.Xiang, J.Y.; Tu, J.P.; Huang, X.H.; Yang, Y.Z; J. Solid State
Electrochem. 2008, 12, 941.
DOI:10.1007/s10008-007-0422-1
46.Chen, W.; Chen, J.; Ye-Bin, F.; Hong, L.; Qi-Ying, C.; Ling-Feng,
W.; Xin-Hua, L.; Xing-Hua, X; Analyst, 2012, 137, 1706.
DOI:10.1039/c2an35072f
47.Zhu, H.; Dongxiao, H.; Meng, Z.; Daxiong, W.; Zhang, C;
Nanoscale Res. Lett.2011, 6, 181.
DOI:10.1186/1556-276x-6-181
48.Singh, D. P.; Ojha, A. K.; Srivastava, O. N; J. Phys. Chem. C,
2009, 113, 3409.
DOI:10.1021/jp804832g
49.Manimaran, R.; Palaniradja, K.; Alagumurthi, N.; Sendhilnathan,
S.; Hussain, J; Appl. Nanosci.2014, 4, 163.
DOI:10.1007/s13204-012-0184-7
50.Wenzhao, J.; Eliot, R.; Paresh, S.; Edgar, G. R.; Pu-Xian, G.; Yu,
L; Mate. Res. Bull.2009, 44, 1681.
DOI:10.1016/j.materresbull.2009.04.003
51.Wang, W.; Wang, L.; Shi, H.; Liang, Y; Cryst. Eng. Comm.2012,
14, 5914.
DOI: 10.1039/C2CE25666E
52.Lu, L.; Xirong, H; Microchim. Acta, 2011, 175,151.
DOI:10.1007/s00604-011-0663-7
53.Krishnan, S.; Haseeb, A. S. M. A.; Johan, M. R; J. Alloys
Compd.2014, 586, 360.
DOI:10.1016/j.jallcom.2013.10.014
54.Bhushan, B.;Luo, D.;Schricker, S. R.;Sigmund, W.;Zauscher, S.
(Eds.); Handbook ofNanomaterials Properties; USA, 2014.
DOI:10.1007/978-3-642-31107-9
55.Muslem, F. J.; Raid, A. I.; Khaled, Z. Y; J. Mater. Sci: Mater.
Electron.2011, 22, 1244.
DOI:10.1007/s10854-011-0294-0
56.Hao-Wen, W.; Siang-Yun, L.; Wen-Chung, L.; Kao-Shuo, C; Appl.
Surf. Sci.2015, 344, 236.
DOI: 10.1016/j.apsusc.2015.03.122
57.Tamgadge, Y. S.; Pahurkar, V. G.; Talwatkar, S. S.; Sunatkari, A.
L.; Muley, G. G; Appl. Phys. B, 2015, 120,373.
DOI: 10.1007/s00340-015-6147-4
58.Wenzhong, W.; Qing, Z.; Xiangmin, F.; Yingbo, H.; Pengcheng,
Z.; Guling, Z.; Lei, P.; Wenjuan, X; Cryst. Eng. Comm.2010, 12,
2232.
DOI: 10.1039/B919043K
59.Volanti, D. P.; Keyson, D.; Cavalcante, L. S.; Sim ̃oes, A. Z.; Joya,
M. R.; Longo, E.; Varela, J. A.; Pizani, P. S.; Souza, A. G; J.
Alloys Compd.2008, 459, 537.
DOI: 10.1016/j.jallcom.2007.05.023
60.Srivastava, M.; Singh, J.; Rajneesh Mishra, K.; Animesh Ojha, K;
J. Alloys Compd..2013, 555, 123.
DOI: 10.1016/j.jallcom.2012.12.049
61.Daniel, L. F.; Colby, A. F; Metal Nanoparticles: Synthesis,
Characterization, and Applications, CRC Press, New York, 2001.
DOI:10.1021/ja015381a
62.Rachel, O.; Usha, R.; Sanjeeviraja;Int. J. Electrochem. Sci.2012,
7, 8288.
63.John, R.; Rajakumari, R; Nano-Micro Lett.2012, 4, 65.
DOI: 10.3786/nml.v4i2.p65-72
64.Tewari, S.; Bhattacharjee, A; Pramana–Journal of Physics, 2011,
76, 153.
DOI:10.1007/s12043-011-0021-7