Document Type : Research Article

Authors

1 Department of Physics, Arul Anandar College (Autonomous), Karumathur, Madurai 625 514, India

2 UGC DAE Consortium for Scientific Research, University campus, Khandwa Road, Indore 452001, India

Abstract

Microwave assisted co-precipitation method is used to synthesize copper oxide nanoparticles from various concentrations of CuCl2.2H2O (0.1 M - 0.5 M) precursors. Both CuO and Cu2O phases are observed from X-ray diffraction (XRD) pattern and further confirmed from Energy Dispersive X-ray Analysis (EDX) and selected area electron diffraction (SAED) data. The particle size of 43 to 27 nm determined from XRD data using Scherrer formula is in good relation with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The existence of reasonably uniform size and shape is clear from SEM. The band gaps determined from the UV-Visible absorption peaks and vibrational modes observed from Micro-Raman Scattering (MRS) analysis further confirm the presence of CuO and Cu2O phases. These results are also related to electrical conductivity at low temperatures which illustrate different types of conduction mechanisms. The samples show semiconducting behavior with improved electrical conductivity. Finally, the material is proposed to have applications in designing gas sensors and also in regulating electrical conductivity in drug delivery systems. Copyright © 2017 VBRI Press.

Keywords

1.Ming-Hui, C.;Hwai-Shen, L.; Clifford Tai, Y; Powder
Technol.2011, 207, 378.

DOI: 10.1016/j.powtec.2010.11.022

2.Abaker, M.; Ahmad, U.; Baskoutas, S.; Kim,S. H.; Hwang, S. W;
J. Phys. D: Appl. Phys.2011, 44,155405.

DOI:10.1088/0022-3727/44/15/155405

3.Chunhua, W.; Yixing, Y.; Bo, T.; Baoyou, G; Cryst. Eng.
Comm.2012, 14, 3677.

DOI: 10.1039/C2CE06707B
4.Rashad, M.M.;Rayan, D.A.;Ramadan, A.A; J. Mater. Sci.:
Mater. Electron.2013, 24, 2742.

DOI:10.1007/s10854-013-1164-8

5.Luwang, M. N; Appl. Surf. Sci.2014, 290, 332.

DOI:10.1016/j.apsusc.2013.11.077

6.Singh, P. L.; Luwang, M. N.; Srivastava, S. K; New J. Chem.2014,
38, 115.

DOI:10.1039/C3NJ00759F

7.Stuart, R. T.; Pattanasattayavong, P.; Anthopoulos, T. D; Chem.
Soc. Rev.2013, 42, 6910.

DOI:10.1039/C3CS35402D

8.Javier, V; J. Phys. Chem. Lett.2013, 4, 653.

DOI:10.1021/jz302100r

9.Dipranjan, L.; Arindam, P.; Sourav, C.; Sandip, K. D.; Somenath,
R.; Panchanan, P.; Parimal, K; RSC Adv.2015, 5, 68169.

DOI: 10.1039/c5ra08110f

10.Perlman, O.; Iris, S. W.; Haim, A; Phys. Med. Biol.2015, 60, 5767.

DOI:10.1088/0031-9155/60/15/5767

11.Ayekpam, B.; Dinesh, S. M.; Narayan, C. T.; Damayanti, D. M.;
Rajen, S. N.; Meitram, N. L; Chin. Chem. Lett.2014, 25, 1615.

DOI: 10.1016/j.cclet.2014.07.014

12.Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M; J.
Phys. Chem. Solids, 2012, 73, 1320.

DOI:10.1016/j.jpcs.2012.07.005

13.Juan, W.; Wei-De, Z; Electrochim. Acta,2011,56, 7510.

DOI:10.1016/j.electacta.2011.06.102

14.Ren, G.; Hu, D.; Cheng, E. W. C; Int. J. Antimicrob. Agents, 2009,
33, 587.

DOI: 10.1016/j.ijantimicag.2008.12.004

15.Henrich; Victor; Cox, P. A; The Surface Science of Metal Oxides,
Cambridge University Press, 2000.

ISBN:0521566878

16.Zhipeng, C.; Jiming, X.; Hui, Z.; Xiaozhong, C.; Juan, S; Mater.
Lett.2011, 65, 2047.

DOI:10.1016/j.matlet.2011.04.021

17.Wang, L.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y;
Nanoscale, 2012, 4, 6850.

DOI:10.1039/c2nr31898a

18.Manoj, D.; Ranjith Kumar, D.; Santhanalakshmi, J; Appl.
Nanosci.2012, 2, 223.

DOI:10.1007/s13204-012-0093-9

19.
Anita Sagadevan, E.; Joon Kang, D; Nanoscale Res. Lett.2012, 7,
70.

DOI:10.1186/1556-276X-7-70

20.Hong, X.; Wang, G.; Zhu, W.; Shen, X.; Wang, Y; J. Phys. Chem.
C, 2009, 113, 14172.

DOI:10.1021/jp9039786

21.Qing, Y.; Hongwen, H.; Ru, C.; Peng, W.; Hangsheng, Y.;
Mingxia, G.; Xinsheng, P.; Zhizhen, Y; Nanoscale, 2012, 4, 2613.

DOI:10.1039/c2nr30135k

22.Reda, M. M.; Farid, A. H.; Ahmed, S; Ceram. Int.2014, 40,2127.

DOI: 10.1016/j.ceramint.2013.07.129

23.Wang, H.; Shen, Q.; Xinping, L.; Fenglin, L; Langmuir, 2009, 25,
3152.

DOI: 10.1021/la803276z

24.Wang, Z.; Xiao, Y.; Xiaobiao, C.; Cheng, P.; Wang, B.; Gao, Y.;
Xiaowei, L.; Yang, T.; Zhang, T.; Geyu, L; ACS Appl. Mater.
Interfaces, 2014, 6, 3888.

DOI: 10.1021/am404858z

25.Zhou, B.; Wang, H.; Liu, Z.; Yang, Y.; Huang, X.; Lü, Z.; Sui, Y.;
Wenhui, S; Mater. Chem. Phys.2011,126, 847.

DOI:10.1016/j.matchemphys.2010.12.030

26.Ling, X.; Hai-Yan, X.; Wang, F.; Feng-Jun, Z.; Ze-Da, M.; Zhao,
W.; Won-Chun, O; J. Korean Ceram. Soc.2012, 49, 151.

DOI:10.4191/kcers.2012.49.2.151

27.Topnania, N.; Kushwaha, S.; Athara, T; Int.J. Green
Nanotechnology: Material Science and Engineering, 2010, 1,
M67.

DOI:10.1080/19430840903430220

28.Yanyan, X.; Dairong,.C.; Xiuling, J.; Keyan, X; J. Phys. Chem. C,
2007, 111, 16284.

DOI:10.1021/jp075358x

29.Karthik, K.; Victor Jaya, N.; Kanagaraj, M.; Arumugam, S; Solid
State Commun.2011, 151, 564.

DOI: 10.1016/j.ssc.2011.01.008

30.Bouazizi1, N.; Bargougui, R.; Oueslati, A.; Benslama, R; Adv.
Mater. Lett.2015, 6, 158.

DOI:10.5185/amlett.2015.5656

31.Lijuan, W.; Qing, Z.; Guling, Z.; Yujie, L.; Baoshun, W.; Weiwei,
Z.; Bo, L.; Wenzhong, W; Mater. Lett. 2012, 74, 217.

DOI: 10.1016/j.matlet.2012.01.123

32.Chengfa, L.; Yin Hou, Y.; Naiying, F.; Yuan, F.; Yanmei, S.;
Meng, Q; Solid State Commun.2010, 150, 585.

DOI: 10.1016/j.ssc.2009.12.039

33.Yunling, Z.; Yan, L.; Zhang, N.; Xiulin , L; Bull. Mater. Sci.2011,
34, 967.

DOI: 10.1007/S12034-011-0223-0

34.Zheng, Z.; Huang, B.; Wang, Z; Guo, M; Xiaoyan, Q.; Zhang, X.;
Wang, P.; Dai, Y; J. Phys. Chem. C, 2009, 113, 14448.

DOI: 10.1021/jp904198d

35.Min, Y. L.; Wang, T.; Chen, Y. C;Appl. Surf. Sci.2010, 257, 132.

DOI: 10.1016/j.apsusc.2010.06.049

36.Li, Q. L.; Yong, W; J. Mater. Chem.2011, 21, 17916.

DOI: 10.1039/C1JM12589C

37.Dar, M. A.; Ahsanulhaq, Q.; Kim, Y. S.; Sohn, J. M.; Kim, W. B.;
Shin, H. S; Appl. Surf. Sci.2009, 255, 6279.

DOI: 10.1016/j.apsusc.2009.02.002

38.Bilecka, I.; Niederberger, M; Nanoscale, 2010, 2, 1358.

DOI: 10.1039/B9NR00377K

39.Luna, I. Z.; Hilary, L. N.; Sarwaruddin Chowdhury, A. M.; Gafur,
M. A.; Khan, N.; Ruhul Khan, A; Open Access Library Journal,
2015, 2, e1409.

DOI: 10.4236/oalib.1101409

40.Tamgadge, Y. S.; Atkare, D. V.; Mahure, M. A.; Gedam, P. P.;
Muley, G. G; JAAST: Material Science, 2014, 1, 153.

 41.Yu, L.; Xiao-Yu, Y.; Joanna, R.; Guastaaf, V. T.; Bao-Lian, S; J.
Colloid Interface Sci.2010, 348, 303.

DOI:10.1016/j.jcis.2010.04.052

42.
Xia, C.; Xiaolan, C.; Ning, W.; Lin, G; Anal. Chim. Acta.2011,
691, 43.

DOI:10.1016/j.aca.2011.02.037

43.Gao, D.; Zhang, J.; Zhu, J.; Jing, Q.; Zhang, Z.; Wenbo, S.;
Huigang, S.; Xue, D; Nanoscale Res. Lett.2010, 5, 769.

DOI: 10.1007/s11671-010-9555-8

44.Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.;
Tanane, O.; Ihssane, B; Appl. Nanosci.2014, 4, 571.

DOI:10.1007/s13204-013-0233-x

45.Xiang, J.Y.; Tu, J.P.; Huang, X.H.; Yang, Y.Z; J. Solid State
Electrochem. 2008, 12, 941.

DOI:10.1007/s10008-007-0422-1

46.Chen, W.; Chen, J.; Ye-Bin, F.; Hong, L.; Qi-Ying, C.; Ling-Feng,
W.; Xin-Hua, L.; Xing-Hua, X; Analyst, 2012, 137, 1706.

DOI:10.1039/c2an35072f

47.Zhu, H.; Dongxiao, H.; Meng, Z.; Daxiong, W.; Zhang, C;
Nanoscale Res. Lett.2011, 6, 181.

DOI:10.1186/1556-276x-6-181

48.
Singh, D. P.; Ojha, A. K.; Srivastava, O. N; J. Phys. Chem. C,
2009,
113, 3409.
DOI:
10.1021/jp804832g
49.Manimaran, R.; Palaniradja, K.; Alagumurthi, N.; Sendhilnathan,
S.; Hussain, J; Appl. Nanosci.2014, 4, 163.

DOI:10.1007/s13204-012-0184-7

50.Wenzhao, J.; Eliot, R.; Paresh, S.; Edgar, G. R.; Pu-Xian, G.; Yu,
L; Mate. Res. Bull.2009, 44, 1681.

DOI:10.1016/j.materresbull.2009.04.003

51.Wang, W.; Wang, L.; Shi, H.; Liang, Y; Cryst. Eng. Comm.2012,
14, 5914.

DOI: 10.1039/C2CE25666E

52.Lu, L.; Xirong, H; Microchim. Acta, 2011, 175,151.

DOI:10.1007/s00604-011-0663-7

53.Krishnan, S.; Haseeb, A. S. M. A.; Johan, M. R; J. Alloys
Compd.2014, 586, 360.

DOI:10.1016/j.jallcom.2013.10.014

54.Bhushan, B.;Luo, D.;Schricker, S. R.;Sigmund, W.;Zauscher, S.
(Eds.); Handbook ofNanomaterials Properties; USA, 2014.

DOI:10.1007/978-3-642-31107-9

55.Muslem, F. J.; Raid, A. I.; Khaled, Z. Y; J. Mater. Sci: Mater.
Electron.2011, 22, 1244.

DOI:10.1007/s10854-011-0294-0

56.Hao-Wen, W.; Siang-Yun, L.; Wen-Chung, L.; Kao-Shuo, C; Appl.
Surf. Sci.2015, 344, 236.

DOI: 10.1016/j.apsusc.2015.03.122

57.
Tamgadge, Y. S.; Pahurkar, V. G.; Talwatkar, S. S.; Sunatkari, A.
L.; Muley, G. G;
Appl. Phys. B, 2015, 120,373.
DOI: 10.1007/s00340-015-6147-4

58.Wenzhong, W.; Qing, Z.; Xiangmin, F.; Yingbo, H.; Pengcheng,
Z.; Guling, Z.; Lei, P.; Wenjuan, X; Cryst. Eng. Comm.2010, 12,
2232.

DOI: 10.1039/B919043K

59.Volanti, D. P.; Keyson, D.; Cavalcante, L. S.; Sim ̃oes, A. Z.; Joya,
M. R.; Longo, E.; Varela, J. A.; Pizani, P. S.; Souza, A. G; J.
Alloys Compd.2008, 459, 537.

DOI: 10.1016/j.jallcom.2007.05.023

60.Srivastava, M.; Singh, J.; Rajneesh Mishra, K.; Animesh Ojha, K;
J. Alloys Compd..2013, 555, 123.

DOI: 10.1016/j.jallcom.2012.12.049

61.Daniel, L. F.; Colby, A. F; Metal Nanoparticles: Synthesis,
Characterization, and Applications, CRC Press, New York, 2001.

DOI:10.1021/ja015381a

62.Rachel, O.; Usha, R.; Sanjeeviraja;Int. J. Electrochem. Sci.2012,
7, 8288.

63.John, R.; Rajakumari, R; Nano-Micro Lett.2012, 4, 65.

DOI: 10.3786/nml.v4i2.p65-72

64.Tewari, S.; Bhattacharjee, A; PramanaJournal of Physics, 2011,
76, 153.

DOI:10.1007/s12043-011-0021-7