Document Type : Research Article
Authors
1 Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
2 Chemical and Process Engineering Department, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
Abstract
NiO/YSZ (nickel oxide / yttria-stabilized zirconia) is the state-of-the-art anode composite for fabrication of high-temperature solid oxide fuel cells (SOFCs). In this study, nanocomposite powder of NiO/YSZ was synthesized by thermal treatment of the gel beads formed by extrusion dripping of sodium alginate solution into an aqueous solution of Ni+2, Y+3, and Zr+4. The NiO/YSZ nanocomposite powder was prepared by calcination (thermal decomposition) of the dried beads in a muffle furnace at 400°C-600°C for 6 hours. The as prepared powders were characterised by TGA, XRD, FESEM, and TEM techniques. The TGA results of the dried beads showed that the thermal degradation begins at 135°C which is followed by a total mass loss of around 75.0% at 600°C. The morphology analysis of the sample (by FESEM and TEM images) showed a relatively uniform particle size distribution of the powder with an average particle size of 5-25 nm that was confirmed by the XRD crystal size calculations. The electrochemical performance measurement of the fabricated cell using the synthesized NiO/YSZ showed a maximum power density of 1143 mW/cm2 at 850°C under hydrogen stream at 20 ml/min. Copyright © 2017 VBRI Press.
Keywords
DOI:10.1021/cm902640j
2.Choudhury, A., Chandra, H., Arora, A., Renew. Sust. Energy Rev.,
2013, 20, 430.
DOI:10.1016/j.rser.2012.11.031
3.Belousov, V.V., Acc. Chem. Res., 2017, 50, 273.
DOI:10.1021/acs.accounts.6b00473
4.Wang, S., Jiang, S.P., Natl Sci Rev, 2017, 4, 163.
DOI:10.1093/nsr/nww099
5.Kan, W.H., Thangadurai, V., Ionics, 2015, 21, 301.
DOI:10.1007/s11581-014-1334-6
6.Gorte, R., Vohs, J., Current Opinion in Colloid & Interface
Science, 2009, 14, 236.
DOI:10.1016/j.cocis.2009.04.006
7.Horri, B.A., Selomulya, C., Wang, H., Int. J. Hydrogen Energy,
2012, 37, 19045.
DOI:10.1016/j.ijhydene.2012.10.005
8.Shri Prakash, B., Senthil Kumar, S., Aruna, S.T., Renew. Sust.
Energy Rev., 2014, 36, 149.
DOI:10.1016/j.rser.2014.04.043
9.Horri, B.A., Selomulya, C., Wang, H., Int. J. Hydrogen Energy,
2012, 37, 15311.
DOI:10.1016/j.ijhydene.2012.07.108
10.Martins, R.F., Brant, M.C., Domingues, R.Z., Paniago, R.M.,
Sapag, K., Matencio, T., Mater. Res. Bull., 2009, 44, 451.
DOI:10.1016/j.materresbull.2008.04.017
11.Xi, X., Kondo, A., Naito, M., J. Alloys Compd., 2016, 688, 1047.
DOI:10.1016/j.jallcom.2016.07.151
Research Article2017,2(12), 813-818Advanced Materials Proceedings
Copyright © 2017VBRI Press 818
12.Kim, S.-D., Moon, H., Hyun, S.-H., Moon, J., Kim, J., Lee, H.-W.,
Solid State Ionics, 2007, 178, 1304.
DOI:10.1016/j.ssi.2007.06.014
13.Singh, K.L., Kumar, A., Singh, A.P., Sekhon, S.S., Bull. Mater.
Sci., 2008, 31, 655.
DOI:10.1007/s12034-008-0104-3
14.Khan, M.S., Lee, S.-B., Song, R.-H., Lee, J.-W., Lim, T.-H., Park,
S.-J., Ceram. Int., 2016, 42, 35.
DOI:10.1016/j.ceramint.2015.09.006
15.Lim, H.H., Sulistya, E., Wong, M.Y., Salamatinia, B., Amini
Horri, B. (2017) in Mishra, A.K. (ed)Sol-gel Based Nanoceramic
Materials: Preparation, Properties and Applications
DOI:10.1007/978-3-319-49512-5
16.Cho, H.J., Choi, G.M., J. Power Sources, 2008, 176, 96.
DOI:10.1016/j.jpowsour.2007.09.118
17.Kim, B., Cho, K., Choi, J., Shin, D., J. Nanosci. & Nanotechnol.,
2015, 15, 536.
DOI:10.1166/jnn.2015.8400
18.Zielke, P., Xu, Y., Kiebach, W.-R., Simonsen, S.B., Norby, P.,
Hendriksen, P.V., Meeting Abstracts, 2016, MA2016-02, 2953.
DOI:MA2016-02/39/2953.short
19.Singh, G., Jalandhar, D., Singh, K.L., Renew. Energy Resour.,
2012, 2, 6.
DOI:10.18535/ijetst
20.Priyatham, T., Bauri, R., Mater. Charact., 2010, 61, 54.
DOI:10.1016/j.matchar.2009.10.005
21.Liang, M., Yu, B., Wen, M., Chen, J., Xu, J., Zhai, Y., Int. J.
Hydrogen Energy, 2010, 35, 2852.
DOI:10.1016/j.ijhydene.2009.05.006
22.Xi, X., Abe, H., Naito, M., Ceram. Int., 2014, 40, 16549.
DOI:10.1016/j.ceramint.2014.08.009
23.Keech, P.G., Trifan, D.E., Birss, V.I., J. Electrochem. Soc.,2005,
152, A645.
DOI:10.1149/1.1855875
24.Suciu, C., Hoffmann, A.C., Dorolti, E., Tetean, R., Chem. Eng. J.,
2008, 140, 586.
DOI:https://doi.org/10.1016/j.cej.2008.02.006
25.Yoon, Y.S., Im, J.M., Shin, D.W., Ceram. Int., 2008, 34, 873.
DOI:http://dx.doi.org/10.1016/j.ceramint.2007.09.039
26.Lim, C.-H., Lee, K.-T., J. Korean Ceram. Soc,, 2014, 51, 243.
27.Fukui, T., Ohara, S., Naito, M., Nogi, K., Powder Technol., 2003,
132, 52.
DOI:10.1016/S0032-5910(03)00044-5
28.Mohebbi, H., Ebadzadeh, T., Hesari, F.A., Powder Technol., 2009,
188, 183.
DOI:10.1016/j.powtec.2008.04.095
29.Birol, H., Rambo, C.R., Guiotoku, M., Hotza, D., RSC Adv., 2013,
3, 2873.
DOI:10.1039/C2RA21810K
30.Zhang, L., Lan, R., Kraft, A., Wang, M., Tao, S., Electrochem.
Commun., 2010, 12, 1589.
DOI:10.1016/j.elecom.2010.08.038
31.Li, F., Jiang, L., Zeng, R., et al., Int. J. Hydrogen Energy, 2015,
40, 12750.
DOI:10.1016/j.ijhydene.2015.07.104
32.Zhang, L., Li, D., Zhang, S., Ceram. Int., 2017, 43, 2859.
DOI:10.1016/j.ceramint.2016.10.188
33.Pezeshkpour, S., Abdullah, A.Z., Salamatinia, B., Amini Horri, B.,
Ceram. Int., 2017, 43, 7123.
DOI:10.1016/j.ceramint.2017.02.145
34.Soares, J., Santos, J., Chierice, G., Cavalheiro, E., Eclética
Química, 2004, 29, 57.
DOI:10.1590/S0100-46702004000200009
35.Mu, J., Perlmutter, D.D., Thermochim. Acta, 1981, 49, 207.
DOI:10.1016/0040-6031(81)80175-X
36.Said, A.A., Hassan, R.M., Polym. Degrad. Stab., 1993, 39, 393.
DOI:10.1016/0141-3910(93)90015-B
37.Batista, R.M., Muccillo, E.N.S., Ceram. Int., 2011, 37, 1047.
DOI:10.1016/j.ceramint.2010.11.031
38.Amini Horri, B. PhD thesis,Monash University. Faculty of
Engineering. Chemical Engineering (2012)
DOI:Repository/monash:89833
39.Elshazly, E.S., Abdelal, O.A., Int. J. Metall. Eng., 2012, 1, 130.
DOI:10.5923.j.ijmee.20120106.07.html
40.Daemi, H., Barikani, M., Scientia Iranica, 2012, 19, 2023.
DOI:10.1016/j.scient.2012.10.005
41.Sarker, B., Papageorgiou, D.G., Silva, R., et al., Journal of
Materials Chemistry B, 2014, 2, 1470.
DOI:10.1039/C3TB21509A
42.Mandal, B., Ray, S.K., Carbohydr. Polym., 2013, 98, 257.
DOI:10.1016/j.carbpol.2013.05.093
43.Papageorgiou, S.K., Kouvelos, E.P., Favvas, E.P., Sapalidis, A.A.,
Romanos, G.E., Katsaros, F.K., Carbohydr. Res., 2010, 345, 469.
DOI:10.1016/j.carres.2009.12.010
44.Danial, A.S., Saleh, M.M., Salih, S.A., Awad, M.I., J. Power
Sources, 2015, 293, 101.
DOI:10.1016/j.jpowsour.2015.05.024
45.Shearing, P.R., Gelb, J., Yi, J., Lee, W.K., Drakopolous, M.,
Brandon, N.P., Electrochem. Commun., 2010, 12, 1021.
DOI:10.1016/j.elecom.2010.05.014