Document Type : Research Article
Authors
Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India
Abstract
The dielectric and electrical spectra of solution cast prepared nanocomposite films comprising poly(vinyl alcohol) (PVA) as polymer matrix and zinc oxide (ZnO) as inorganic nanofiller (PVA–x wt% ZnO (x = 0, 1, 3 and 5)) have been investigated in the frequency range from 20 Hz to 1 MHz. Anomalous increase is observed in real part of complex permittivity with increase of ZnO concentration, whereas relaxation peak corresponding to PVA chain segmental motion is appeared in the intermediate frequency region of dielectric loss tangent and the loss part of electric modulus spectra of the nanocomposites. These results confirm that the interaction of ZnO nanoparticles with hydroxyl groups of PVA acts as exciter for polymer chain segmental dynamics in the nanocomposites. The temperature dependent dielectric investigations on PVA–3 wt% ZnO film reveal that the dielectric polarization and chain segmental dynamics increase with the increase of temperature. The dielectric relaxation and conductivity activation energies values of the film are determined from the Arrhenius relation, which are found equal. The X-ray diffraction study confirms that the crystalline phase of PVA matrix abruptly reduces with doping of only 1 wt% ZnO which suggests that the interaction of polymer-nanoparticles significantly alter the hydrogen bonded crystalline structure of pristine PVA matrix. The dielectric and electrical results showed that these nanodielectrics are potentially useful as an electrical insulation material for various electronic devices. Copyright © 2017 VBRI Press.
Keywords
Applications; American Scientific Publishers: California, USA,
2006.
2.Keith, N. J.; Dielectric Polymer Nanocomposites; Springer Science
+ Business Media, LLC, 2010.
DOI: 10.1007/978-1-4419-1591-7
3.Mittal, V.; Characterization Techniques for Polymer
Nanocomposites; Wiley-VCH Verlag GmbH & Co. KgaA, 2012.
DOI:10.1002/9783527654505
4.Reddy, B. S. R.; Advances in Nanocomposites -Synthesis,
Characterization and Industrial Applications; InTech: Croatia,
2011.
5.Hmar, J. J. L.; Majumder, T.; Roy, J. N.; Mondal, S. P.; J. Alloys
Comp., 2015,651,82–90.
DOI: 10.1016/j.jallcom.2015.08.101
6.Sengwa, R. J.; Choudhary, S.; Sankhla, S.; Compos. Sci. Technol.,
2010,70,1621.
DOI: 10.1016/j.compscitech.2010.06.003
7.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci.,2012,124,4847.
DOI:10.1002/app.35556
8.Choudhary, S.; Sengwa, R. J.; Polym. Bull., 2015,72,2591.
DOI:10.1007/s00289-015-1424-2
9.Bouropoulos, N.; Psarras, G. C.; Moustakas, N.;
Chrissanthopoulos, A.; Baskoutas, S.; Phys. Stat. Sol.(a), 2008,
205,2033.
DOI:10.1002/pssa.200778863
10.Kinadjian, N.; Achard, M. F.; López, B. J.; Maugey, M.; Poulin,
P.; Prouzet, E.; Backov, R.; Adv. Funct. Mater., 2012,22,3994.
DOI:10.1002/adfm.201200360
11.Wang, M.; Lian, Y.; Wang, X.; Curr. Appl. Phys., 2009,9,189.
DOI: 10.1016/j.cap.2008.01.009
12.Bai, Z.; Yan, X.; Chen, X.; Liu, H.; Shen, Y.; Zhang, Y.; Curr.
Appl. Phys., 2013,13,165.
DOI: 10.1016/j.cap.2012.07.005
13.Fernandes, D. M.; Winkler Hechenleitner, A. A.; Lima, S. M.;
Andrade, L. H. C.; Caires, A. R. L.; Gómez Pineda, E. A.; Mater.
Chem. Phys., 2011,128,371.
DOI:10.1016/j.matchemphys.2011.03.002
14.Im, Y. M.; Oh, T. H.; Nathanael, J. A.; Jang, S. S.; Mater. Lett.,
2015,147,20.
DOI:10.1016/j.matlet.2015.02.004
15.Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V.
G.; Muley, G. G.; Opt. Mater., 2016,51,175.
DOI:10.1016/j.optmat.2015.11.037
16.Roy, A. S.; Gupta, S.; Sindhu, S.; Parveen, A.; Ramamurthy, P. C.;
Composites: Part B, 2013,47,314.
DOI:10.1016/j.compositesb.2012.10.029
17.Chandrakala, H. N.; Ramaraj, B.; Shivakumaraiah, Lee, J. H.;
Siddaramaiah, J. Alloys Compd., 2013,580,392.
DOI:10.1016/j.jallcom.2013.06.091
18.Vaishnav, D.; Goyal, R. K.; IOP Conf. Series: Mater. Sci. Eng.,
2014,64,012016.
DOI: 10.1088/1757-899X/64/1/012016
19.Rashmi, S. H.; Raizada, A.; Madhu, G. M.; Kittur, A. A.; Suresh,
R.; Sudhina, H. K.; Plastics, Rubber Compos., 2015,44,33.
DOI:10.1179/1743289814Y.0000000115
20.Karthikeyan, B.; Pandiyarajan, T.; Mangalaraja, R. V.;
Spectrochim. Acta Part A, 2016,152,485.
DOI:10.1016/j.saa.2015.07.053
21.Fernandes, D. M.; Winkler Hecjenleitner, A. A.; Lima, S. M.;
Andrade, L. H. C.; Caires, A. R. L.; Gómex Pineda, E. A.; Mater.
Chem. Phys., 2011,128,371.
DOI: 10.1016/j.matchemphys.2011.03.002
22.Van Etten, E. A.; Ximenes, E. S.; Tarasconi, L. T.; Garcia, I. T. S.;
Forte, M. M. C.; Boudinov, H.; Thin Solid Films, 2014,568,111.
DOI:10.1016/j.tsf.2014.07.051
23.Rao, J. K.; Raizada, A.; Ganguly, D.; Mankad, M. M.;
Satayanarayana, S. V.; Madhu, G. M.; J. Mater. Sci., 2015,50,
7064.
DOI:10.1007/s10853-015-9261-0
24.Hassan, C. M.; Peppas, N. A.; Adv. Polym Sci., 2000,153,37.
DOI: 10.1007/3-540-46414-X_2
773.
DOI:10.1016/j.eurpolymj.2006.11.030
26.Scotchford, C. A.; Cascone, M. G.; Downes, S.; Giusti, P.;
Biomaterials, 1998,19,1.
DOI:10.1016/S0142-9612(97)00236-6
27.Han, S.; Huang, W.; Shi, W.; Yu, J.; Sensors and Actuators B,
2014,203, 9.
DOI:10.1016/j.snb.2014.06.083
28.Morales-Acosta, M. D.; Quevedo-López, M. A.; Ramírez-Bon, R.;
Mater. Chem. Phys., 2014,146,380.
DOI:10.1016/j.matchemphys.2014.03.042
29.Sengwa, R. J.; Choudhary, S.; J. Phys. Chem. Solids, 2014,75,
765–774.
DOI:10.1016/j.jpcs.2014.02.008
30.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci., 2014,131,
40617.
DOI:10.1002/app.40617
31.Irimpan, L.; Nampoori, V. P. N.; Radhakrishnan, P.; J. Appl. Phys.,
2008,104,113112.
32.Choudhary, S.; Sengwa, R. J.; Express Polym. Lett., 2010,9,559.
DOI:10.3144/expresspolymlett.2010.70
33.Tantis, I.; Psarras, G. C.; Tasis, D.; Express Polym. Lett., 2012,6,
283.
DOI:10.3144/expresspolymlett.2012.31
34.Sinha, S.; Chatterjee, S. K.; Ghosh, J.; Meikap, A. K.; Polym.
Compos., 2017,38, 287..
DOI:10.1002/pc.23586