Document Type : Research Article

Authors

Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India

Abstract

The dielectric and electrical spectra of solution cast prepared nanocomposite films comprising poly(vinyl alcohol) (PVA) as polymer matrix and zinc oxide (ZnO) as inorganic nanofiller (PVA–x wt% ZnO (x = 0, 1, 3 and 5)) have been investigated in the frequency range from 20 Hz to 1 MHz. Anomalous increase is observed in real part of complex permittivity with increase of ZnO concentration, whereas relaxation peak corresponding to PVA chain segmental motion is appeared in the intermediate frequency region of dielectric loss tangent and the loss part of electric modulus spectra of the nanocomposites. These results confirm that the interaction of ZnO nanoparticles with hydroxyl groups of PVA acts as exciter for polymer chain segmental dynamics in the nanocomposites. The temperature dependent dielectric investigations on PVA–3 wt% ZnO film reveal that the dielectric polarization and chain segmental dynamics increase with the increase of temperature. The dielectric relaxation and conductivity activation energies values of the film are determined from the Arrhenius relation, which are found equal. The X-ray diffraction study confirms that the crystalline phase of PVA matrix abruptly reduces with doping of only 1 wt% ZnO which suggests that the interaction of polymer-nanoparticles significantly alter the hydrogen bonded crystalline structure of pristine PVA matrix. The dielectric and electrical results showed that these nanodielectrics are potentially useful as an electrical insulation material for various electronic devices. Copyright © 2017 VBRI Press.

Keywords

1.Ray, S. R.; Bousmina, M.; Polymer Nanocomposites and Their
Applications; American Scientific Publishers: California, USA,
2006.

2.Keith, N. J.; Dielectric Polymer Nanocomposites; Springer Science
+ Business Media, LLC, 2010.

DOI: 10.1007/978-1-4419-1591-7

3.Mittal, V.; Characterization Techniques for Polymer
Nanocomposites; Wiley-VCH Verlag GmbH & Co. KgaA, 2012.

DOI:10.1002/9783527654505

4.Reddy, B. S. R.; Advances in Nanocomposites -Synthesis,
Characterization and Industrial Applications; InTech: Croatia,
2011.

5.Hmar, J. J. L.; Majumder, T.; Roy, J. N.; Mondal, S. P.; J. Alloys
Comp., 2015,651,8290.

DOI: 10.1016/j.jallcom.2015.08.101

6.Sengwa, R. J.; Choudhary, S.; Sankhla, S.; Compos. Sci. Technol.,
2010,70,1621.

DOI: 10.1016/j.compscitech.2010.06.003

7.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci.,2012,124,4847.

DOI:10.1002/app.35556

8.Choudhary, S.; Sengwa, R. J.; Polym. Bull., 2015,72,2591.

DOI:10.1007/s00289-015-1424-2

9.Bouropoulos, N.; Psarras, G. C.; Moustakas, N.;
Chrissanthopoulos, A.; Baskoutas, S.; Phys. Stat. Sol.(a), 2008,
205,2033.

DOI:10.1002/pssa.200778863

10.Kinadjian, N.; Achard, M. F.; López, B. J.; Maugey, M.; Poulin,
P.; Prouzet, E.; Backov, R.; Adv. Funct. Mater., 2012,22,3994.

DOI:10.1002/adfm.201200360

11.Wang, M.; Lian, Y.; Wang, X.; Curr. Appl. Phys., 2009,9,189.

DOI: 10.1016/j.cap.2008.01.009

12.Bai, Z.; Yan, X.; Chen, X.; Liu, H.; Shen, Y.; Zhang, Y.; Curr.
Appl. Phys., 2013,13,165.

DOI: 10.1016/j.cap.2012.07.005

13.Fernandes, D. M.; Winkler Hechenleitner, A. A.; Lima, S. M.;
Andrade, L. H. C.; Caires, A. R. L.; Gómez Pineda, E. A.; Mater.
Chem. Phys., 2011,128,371.

DOI:10.1016/j.matchemphys.2011.03.002

14.Im, Y. M.; Oh, T. H.; Nathanael, J. A.; Jang, S. S.; Mater. Lett.,
2015,147,20.

DOI:10.1016/j.matlet.2015.02.004

15.
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V.
G.; Muley, G. G.;
Opt. Mater., 2016,51,175.
DOI:10.1016/j.optmat.2015.11.037

16.Roy, A. S.; Gupta, S.; Sindhu, S.; Parveen, A.; Ramamurthy, P. C.;
Composites: Part B, 2013,47,314.

DOI:10.1016/j.compositesb.2012.10.029

17.Chandrakala, H. N.; Ramaraj, B.; Shivakumaraiah, Lee, J. H.;
Siddaramaiah, J. Alloys Compd., 2013,580,392.

DOI:10.1016/j.jallcom.2013.06.091

18.Vaishnav, D.; Goyal, R. K.; IOP Conf. Series: Mater. Sci. Eng.,
2014,64,012016.

DOI: 10.1088/1757-899X/64/1/012016

19.Rashmi, S. H.; Raizada, A.; Madhu, G. M.; Kittur, A. A.; Suresh,
R.; Sudhina, H. K.; Plastics, Rubber Compos., 2015,44,33.

DOI:10.1179/1743289814Y.0000000115

20.Karthikeyan, B.; Pandiyarajan, T.; Mangalaraja, R. V.;
Spectrochim. Acta Part A, 2016,152,485.

DOI:10.1016/j.saa.2015.07.053

21.
Fernandes, D. M.; Winkler Hecjenleitner, A. A.; Lima, S. M.;
Andrade, L. H. C.; Caires, A. R. L.; Gómex Pineda, E. A.;
Mater.
Chem. Phys.
, 2011,128,371.
DOI: 10.1016/j.matchemphys.2011.03.002

22.Van Etten, E. A.; Ximenes, E. S.; Tarasconi, L. T.; Garcia, I. T. S.;
Forte, M. M. C.; Boudinov, H.; Thin Solid Films, 2014,568,111.

DOI:10.1016/j.tsf.2014.07.051

23.Rao, J. K.; Raizada, A.; Ganguly, D.; Mankad, M. M.;
Satayanarayana, S. V.; Madhu, G. M.; J. Mater. Sci., 2015,50,
7064.

DOI:10.1007/s10853-015-9261-0

24.
Hassan, C. M.; Peppas, N. A.; Adv. Polym Sci., 2000,153,37.
DOI: 10.1007/3-540-46414-X_2
25.Kokabi, M.; Sirousazar, M.; Hassan, Z.; Eur. Polym. J., 2007,43,
773.

DOI:10.1016/j.eurpolymj.2006.11.030

26.Scotchford, C. A.; Cascone, M. G.; Downes, S.; Giusti, P.;
Biomaterials, 1998,19,1.

DOI:10.1016/S0142-9612(97)00236-6

27.Han, S.; Huang, W.; Shi, W.; Yu, J.; Sensors and Actuators B,
2014,203, 9.

DOI:10.1016/j.snb.2014.06.083

28.Morales-Acosta, M. D.; Quevedo-López, M. A.; Ramírez-Bon, R.;
Mater. Chem. Phys., 2014,146,380.

DOI:10.1016/j.matchemphys.2014.03.042

29.Sengwa, R. J.; Choudhary, S.; J. Phys. Chem. Solids, 2014,75,
765774.

DOI:10.1016/j.jpcs.2014.02.008

30.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci., 2014,131,
40617.

DOI:10.1002/app.40617

31.Irimpan, L.; Nampoori, V. P. N.; Radhakrishnan, P.; J. Appl. Phys.,
2008,104,113112.

32.Choudhary, S.; Sengwa, R. J.; Express Polym. Lett., 2010,9,559.

DOI:10.3144/expresspolymlett.2010.70

33.
Tantis, I.; Psarras, G. C.; Tasis, D.; Express Polym. Lett., 2012,6,
283.

DOI:10.3144/expresspolymlett.2012.31

34.
Sinha, S.; Chatterjee, S. K.; Ghosh, J.; Meikap, A. K.; Polym.
Compos.
, 2017,38, 287..
DOI:10.1002/pc.23586