Document Type : Research Article

Authors

1 Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam

2 Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India

3 Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India Professor, Homi Bhabha National Institute, Department of Atomic Energy

Abstract

Chromium alloyed Ferritic/Martensitic steels are widely used as structural materials in power plants, and considered for core applications of fast and fusion reactors. Characterization and fundamental interpretation of deformed microstructure through crystal plasticity principles are useful for tailoring desired microstructure by optimal processing methods. This study reports the characterization of plastic strain distribution in cold rolled 9Cr-1Mo steel using Electron back scatter diffraction (EBSD) technique. Small orientation changes within the individual grains were studied to gauge the accumulation of ‘geometrically necessary’ dislocations in deformed material, and correlate with the load geometry. The correlated misorientation angle distribution showed a significant presence of low angle boundaries in the deformed microstructure as compared to the annealed specimen. Crystal orientation map of deformation bands indicated significant intra-grain rotation, and the extent of rotation was distinctly different for different grains. A heterogeneous accumulation of plastic strain distribution is inferred from the grain maps of local misorientation angle (0.5º-5º) and orientation spread parameters. Analysis by Schmid factor criteria (0.4-0.5) showed more than 50% of the grains to exhibit favorable orientation for {110} <111> slip activity, whereas higher stress would be required for plastic deformation of remaining grains. Copyright © 2017 VBRI Press.

Keywords

1.Klueh, R. L.; Int. Mater. Rev.,2005,50,287.
DOI: 10.1179/174328005X41140

2.
Klueh, R. L.; Nelson, A. T.; J. Nucl. Mater., 2007, 317, 37.
DOI: 10.1016/j.jnucmat.2007.05.005

3.Karthikeyan, T.; Dash, M. K.; Saroja, S.; and Vijayalakshmi, M.;
Metall. Mater. Trans. A, 2013,44, 1673.

DOI: 10.1007/s11661-012-1549-y

4.Musienko, A.; Tatschl, A.; Schmidegg, K.; Kolednik, O.; Pippan,
R.; Cailletaud, G.; Acta Mater., 2007, 55, 4121.

DOI: 10.1016/j.actamat.2007.01.053

5.Kamaya, M.; Mater. Charact., 2009,
60 (2), 125.
DOI: 10.1016/j.matchar.2008.07.010

6.Dieter, G. E.; Mechanical Metallurgy,McGraw-hill: UK, 1988.

7.
Hosford, F, Mechanicalbehavior of Material, Cambridge
university press, US
, 2010
8.Humphreys, F. J.; J. of Mater. Sci. 2001, 36, 3833.

DOI: 10.1023/A:1017973432592

9.Schwartz, A. J.; Kumar, M.; Adams, B. L.; Field D. P.; Electron
Backscatter Diffraction in Materials Science (Second ed.),
Springer: New York, 2009.

DOI: 10.1007/978-0-387-88136-2

10.Winklmann, A.; Ultramicroscopy, 2008, 108, 1546.

DOI:10.1016/j.ultramic.2008.05.002

11.Keller, R. R.; Roshko, A.; Geiss, R. H.; Bertness, K. A., Quinn, T.
P., Microelec. Eng., 2004, 75 (1), 96.

DOI: 10.1016/j.mee.2003.11.010

12.
Krieger, N. C. L.; Juul, D. J.; Conradsen, K.; Mater. Sci. Forum,
199
4, 157-162, 149.
DOI: Not Available

13.Field, D. P.; Mater Sci Eng A, 1995, 190, 241.

DOI: Not Available

14.Sutliff, J. A.; Microsc Microanal, 1999, 2, 236.

DOI: 10.2320/matertrans.MAW201005

15.
Chandrasekaran, D.; Nygårds, M.; Acta. Mater., 2003, 51, 5375.
DOI:10.1016/S1359-6454(03)00394-X

16.Mino, K.; Imamura, R.; Koiwai, H.; Fukuoka, C.; Adv. Eng.
Mater., 2003, 3, 922.

DOI:10.1016/j.nucengdes.2004.11.006

17.Wagner, F.;Allain-Bonasso, N.; Berbenni, S.; Field D. P.; Mater.
Sci. Forum, 2011, 702, 245.

DOI:10.4028/www.scientific.net/MSF.702-703.245
18.Sugiyama, S.; Yanagida, A.; Yanagimoto, J.; Mater. Sci. Engg.,
2008, 478, 376.

DOI:10.1016/j.msea.2007.06.039

19.Parks, D. M.; Ahzi, S.;J. Mech. Phvs. Solids, 1990, 38, 701.

20.
Pickering, F. B.; Met Technol,1980,7, 409.
DOI: Not Available

21.Karthikeyan, T.; Dash, M. K.; Saroja, S.; Vijayalakshmi, M., J. of
Microscopy, 2013, 249, 26.

DOI:10.1111/j.1365-2818.2012.03676.x

22.Kamaya, M.; Mater. Charact. 2012, 66, 56.

DOI: 10.1016/j.matchar.2012.02.001

23.Field, D.P.; Trivedi, P. B.; Wright, S. I.; Kumar, M.;
Ultramicroscopy, 2005, 103, 33.

DOI:10.1016/j.ultramic.2004.11.016

24.Molinari, A.; Canova, G. R.; Ahzi, S.; Acta metall., 1987, 35,
2983.

DOI: Not Available

25.
Mika, D. P.; Dawson, P. R.; Mater. Sci. Engg.A, 1998, 257, 62.
DOI: Not Available

26.Kamaya, M.; Wilkinson, A. J.; Titchmarsh, J. M.; Nucl Eng Des,
2005, 235,713.

DOI: Not Available

27.Brewer L. N.; Othon, M. A.; Young, L. M.; Angeliu, T. M.;
Microsc. Microanal., 2006, 12, 85.

DOI: 10.1017/S1431927606060120