Document Type : Research Article
Authors
1 Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus,Dr. K. S. Krishnan Marg, New Delhi-110012, India
2 Flexible Organic Energy Devices, Advanced Materials and Devices, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
Abstract
Currently significant progress has been made for the small molecules, indeed, achieved comparable performance compared to polymer in electronic devices mainly due to the many advantages of small molecules over the polymers. Designing better small molecules for electronic applications are required a comprehensive understanding of the structure-properties relationship and the factors affecting it. Valuable information can be generated directly toward understanding by systematically theoretical and experimental studies (band gap, HOMO, LUMO energy levels and geometry). Hybrid density functional B3LYP level of theory is a very good method for predicting the reliable geometry, electronic structure and properties of conjugated systems. In the present work, we have calculated the band gaps, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and geometry of a series of small molecules based on oligothiophene, benzodithiophene and dithienosilole unit using the hybrid density functional (B3LYP/6-31G(d)) level of theory and correlated with experimental values. The study provides details for the effect of the extended conjugation, two-dimension conjugation, substitution on geometry, HOMO, LUMO and band gaps of the small molecules. Copyright © 2017 VBRI Press.
Keywords
107, 1324–1338.
DOI:10.1021/cr050149z
2.Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H.;
Science, 1999, 285, 692-698.
DOI:10.1126/science.285.5428.692
3.You, J.; Dou, L. T.; Yoshimura, K.; Kato,T.; Ohya, K.; Moriarty,
T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y.; Nature
Communication, 2013, 4, 1446.
DOI:10.1038/ncomms2411
4.a)Beaujuge, P. M.; Fréchet, J. M. J.; J. Am. Chem. Soc., 2011,133,
20009–20029.
DOI:10.1021/ja2073643
b)Dong ,H.; Zhu, H.; Meng Q.; Gong, X.; Hu,W.; Chem. Soc.
Rev., 2012, 41,1754–1808.
DOI:10.1039/c1cs15205j
c)Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu,L.;
Chem. Rev, 2015, 115, 12666-12731and reference therein
DOI: 10.1021/acs.chemrev.5b00098
5.Lee, H. K. H.; Li, Z.; Constantinou, I.; So F.; Tsang, S. W.; So, S.;
K.; Adv. Energy Mater., 2014, 1400768 and reference therein.
DOI:10.1002/aenm.201400768
6.Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; Boer, B.;
Polymer Reviews, 2008, 48, 531–582.
DOI:10.1080/15583720802231833
7.Coughlin, J. E.; Censon, Z. B.; Welch, G.C.; Bazan, G. C.; Acc. of
Chem. Res., 2014, 47, 257–270.
DOI10.1021/ar400136b
8.Chen, Y.; Wan, X.; Long, G.; Acc. of Chem. Res, 2013, 46, 2645–
2655
DOI:10.1021/ar400088c
9.Zade, S. S.; Bendikov, M.; Org. Lett., 2006,8, 5243.
DOI: 10.1021/ol062030y
10.Zade, S. S.; Zamoshchik, N.; Bendikov, M.; Acc. Chem. Res.,
2011, 44,14–24
DOI:10.1021/ar1000555
11.a)Parr, R. G.; Yang, W.; Density-functional theory of atoms and
molecules, Oxford University Press, New York, 1989.
b)Koch, W.; Holthausen, M. C.; A Chemist’s guide to density
functionaltheory, Wiley-VCH, New York, 2000.
c)Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B, 1988, 37, 785-789.
DOI:10.1103/PhysRevB.37.785
d)Becke, A. D.; J. Chem. Phys.,1993, 98, 5648-5652.
DOI:10.1063/1.464913
12.Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.,
Montgomery, J. A.; Vreven, T. Jr.; Kudin,K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci,
B.; Cossi, M.; Scalmani G.; Rega, N.; Petersson, G. A.; Nakatsuji,
H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin,
A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski,V. G.; Dapprich,S.; Daniels,A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz,J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov,B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.
A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.
W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J.
A.; Gaussian, Inc., Pittsburgh, PA, 2003.
13.Li, Y. Acc. Chem. Res. 2012, 45, 723–733
DOI:10.1021/ar2002446
14.Liu, Y.; Zhou, J.; Wan, X.; Chen, Y.; Tetrahedron, 2009, 65,
5209–5215.
DOI:10.1016/j.tet.2009.04.089
15.Schulze, K.;Uhrich, C.; Schüppel, R.; Leo, K.; Pfeiffer, M.; Brier,
E.; Reinold, E.;Bäuerle P.; Adv. Mater., 2006, 18, 2872-2875.
DOI:10.1002/adma.200600658
16.Yin, B.; Yang, L. Y.; Liu, Y. S.; Chen, Y. S.; Qi, Q. J.; Zhang, F.
L.; Yin, S. G.; Appl. Phys. Lett., 2010, 97,023303-023305
DOI:10.1063/1.3460911
17.Liu, Y.; Wan, X.; Yin, B.; Zhou, J.; Long, G.; Yinb, S.; Chen, Y.;
J. Mater. Chem., 2010, 20,2464-2468.
DOI:10.1039/b925048d
18.a)Li, M.; Ni, W.; Wan, X.; Zhang, Q.; Kan,B.; Chen, Y.; J.
Mater. Chem.A, 2015, 3, 4765-4776.
DOI: 10.1039/C4TA06452F
b) Huo, L.; Hou, J.; Poly. Chem., 2011, 2, 2453.
DOI:10.1039/c1py00197c
c)Liang, Y.; Wu, Y.; Feng, D.; Tsai, S.; Son, H.; Li, G.; Yu, L.;J.
Am. Chem. Soc., 2008, 131, 56-57.
DOI 10.1021/ja808373p,
19.Zhou, H.; Yang, L.; Stoneking, S.; You, W.; ACS Appl. Mater.
Interfaces, 2010, 21377-1383.
DOI: 10.1021/am1000344
20.Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.;
Li, Z.; He, G.; Li, C.; Kan, B.; Chen, Y.; J. Am. Chem. Soc., 2013,
135, 8484–8487.
DOI.10.1021/ja403318y
21.Zhou, J.; Wan, X.; Liu, Y.; Zuo, Y.; Li, Z.; He, G.; Long, G.; Ni,
W.; Li, C.; Su, X. C.; Chen, Y.; J. Am. Chem. Soc.,2012, 134,
16345–16351.
DOI:10.1021/ja306865z
22.Takacs, C. J.; Sun, Y.; Welch, G. C.; Perez, L. A.; Liu, X.; Wen
W.; Bazan, G.C.; Heeger, A. J.; J. Am. Chem. Soc.,2012, 134,
16597−16606.
DOI:10.1021/ja3050713 |
23.Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.;
Heeger, A. J.; Nat. Mater.,2012, 11, 44–48.
DOI:10.1038/nmat3160
24.Van der Poll, T. S.; Love, J. A.; Nguyen, T. Q.; Bazan, G. C.;Adv.
Mater.,2012, 24, 3646–3649.
DOI:10.1002/adma.201201127
25.Zhou, J.; Wan, X.; Liu, Y.; Long, G.;Wang, F.; Li, Z.; Zuo, Y.; Li,
C.; Chen, Y.; Chem. Mater., 2011, 23, 4666–4668.
DOI: 10.1021/cm202588h