Document Type : Research Article
Authors
1 Centre for Research in Nanotechnology & Science (CRNTS), IIT-Bombay, Mumbai, 400076, India
2 Department of Metallurgical Engineering and Materials Science, IIT-Bombay, Mumbai, 400076, India
Abstract
The luminescence at the absorption maximum of c-Si solar cells (1002 nm) of Ytterbium (3+) ions (Yb3+) make them a suitable candidate for solar spectrum converting material for c-Si solar cell. In this work oleic acid functionalized lanthanum fluoride (OA-LaF3) nanoparticles doped with Nd3+, Yb3+ (2-5 nm) were synthesized by coprecipitation method in which Nd3+ (Neodymium (3+) ions) acts as the sensitizer for Yb3+. The oleic acid chemisorption on LaF3 nanoparticles was confirmed by FTIR and TGA analysis. OA-LaF3: Nd3+ Yb3+ nanoparticles (Nd3+ -10 mol%, Yb3+-0 to 20 mol% ) luminescent at 880 nm, 1053 nm, 1325 nm (Nd3+ ions) and 1002 nm (Yb3+ ions) was observed for excitation at 575 nm. The excitation spectra for the Yb3+ emission from OA-LaF3: Nd3+ Yb3+ showed all the excitation peaks of Nd3+ in the visible region. This confirmed the energy transfer from Nd3+ to Yb3+ ions. The increase in the Yb3+ emission intensity at 1002 nm was observed as Yb3+ dopant concentration increased from 0 to 5%. Above 5% of Yb3+ doping concentration, Yb3+ luminescence was observed to be decreasing, which was attributed to the concentration quenching. Copyright © 2017 VBRI Press.
Keywords
42, 173.
DOI: 10.1039/C2CS35288E
2.Trupke, T.; Green, M.; Würfel, P.; J. Appl. Phys., 2002, 92, 1668.
DOI: 10.1063/1.1492021
3.Bünzli, J.-C. G.; Eliseeva, S. V.; J. Rare Earths, 2010, 28, 824.
DOI: 10.1016/S1002-0721(09)60208-8
4.Bünzli, J.-C. G.; Piguet, C.; Chem. Soc. Rev., 2005, 34, 1048.
DOI: 10.1039/B406082M
5.Kumara P.; Gupta B. K.; RSC Adv., 2015, 5, 24729.
DOI: 10.1039/C4RA15383A
6.Trupke, T.; Green, M.; Würfel, P.; J. Appl. Phys, 2002, 92, 4117.
DOI: 10.1063/1.1492021
7.Yu D.;Rodríguez R.M.; Zhang Q.;Meijerink A.; Freddy T
Rabouw; Light Sci. Appl.,2015, 4, e344
DOI: 10.1038/lsa.2015.117
8.Ru-Shi Liu (ED.); Phosphors, Up Conversion Nano Particles,
Quantum Dots and Their Applications; Springer, 2016
DOI: 10.1007/978-3-662-52771-9
9.Taia Y.; Zhenga G.; Wanga H., Bai J.; J. Solid State Chem., 2015,
226, 250.
DOI: 10.1016/j.jssc.2015.02.020
10.Zhang J.; Xia H.; Jiang Y.;Yang S.; Jiang H.;Zhang B.C.; IEEE J.
Quant. Electron., 2015, 51,1.
DOI:10.1109/JQE.2015.2418756
11.Zhang, Q.; Yang, G.; Jiang, Z.; Appl. Phys. Lett., 2007, 91, 1903.
DOI: 10.1063/1.2757595
12.Huang, X.; Zhang, Q.; J. Appl. Phys., 2009, 105, 53521.
DOI: 10.1063/1.3088890
13.Meijer, J.-M.; Aarts, L.; van der Ende, B. M.; Vlugt, T. J.;
Meijerink, A.; Phys. Rev. B, 2010, 81, 035107.
DOI:10.1103/PhysRevB.81.035107
14.Yu, D.; Ye, S.; Peng, M.; Zhang, Q.; Wondraczek, L.; Appl. Phys.
Lett., 2012, 100, 191911.
DOI: 10.1063/1.4714505
15.Miritello, M.; Savio, R. L.; Cardile, P.; Priolo, F.; Phys. Rev. B,
2010, 81, 041411.
DOI: 10.1103/PhysRevB.81.041411
16.Yu, D.; Huang, X.; Ye, S.; Peng, M.; Zhang, Q.; Wondraczek, L.;
Appl. Phys. Lett., 2011, 99, 161904.
DOI: 10.1063/1.3652916
17.Batalioto, F.; de Sousa, D. F.; Bell, M. J. V.; Lebullenger, R.;
Hernandes, A. C.; Nunes, L. A. O.; J. Non-Cryst. Solids, 2000,
273, 233.
DOI:10.1016/S0022-3093(00)00132-0
18.Lurin, C.; Parent C.; Le Flem G.; Hagenmuller P.; J. Phys. Chem.
Solids.,1985, 46, 1083.
DOI: 10.1016/0022-3697(85)90024-1
19.Parent C.; Lurin C.; Le Flem G.; Hagenmuller P.; J Lumin.,1986,
36, 49.
DOI: 10.1016/0022-2313(86)90030-X
20.Ryba-Romanowski W.; Goła̧ b S.; Cichosz L.; Jeżowska-
Trzebiatowska B.; J. Non-Cryst. Solids.,1988, 105, 295.
DOI: 10.1016/0022-3093(88)90322-5
21.Batalioto F.; de Sousa DF.; Bell M. J. V.; Lebullenger R.;
Hernandes A. C.; Nunes L. A. O.; J. Non-Cryst. Solids., 2000, 273,
233.
DOI: 10.1016/S0022-3093(00)00132-0
22.De Sousa D, Batalioto F, Bell M, Oliveira S, Nunes L., J. Appl.
Phys., 2001,90, 3308.
DOI: 10.1063/1.1397289
23.Rast H, Caspers H, Miller S. J. Chem. Phys., 1967, 47, 3874.
DOI: 10.1063/1.1701548
24.Nampoothiri, P. K.; Gandhi, M. N.; Kulkarni, A., J. Mater. Chem.
C, 2015, 3, 1817.
DOI: 10.1039/C4TC02646B
25.Zhang, L.; He, R.; Gu, H.-C.; Appl. Surf. Sci., 2006, 253, 2611.
DOI: 10.1016/j.apsusc.2006.05.023
26.Wang, J.; Hu, J.; Tang, D.; Liu, X.; Zhen, Z.; J. Mater. Chem.,
2007, 17, 1597.
DOI: 10.1039/B617754A
27.Liu, G.; Conn, C. E.; Drummond, C. J.; J. Phys. Chem. B, 2009,
113, 15949.
DOI: 10.1021/jp906344u
28.Deacon, G.; Huber, F.; Phillips, R.; Inorg. Chim. Acta, 1985, 104,
41.
DOI:10.1016/S0020-1693(00)83783-4
29.De Sousa, D.; Batalioto, F.; Bell, M.; Oliveira, S.; Nunes, L.; J.
Appl. Phys., 2001, 90, 3308.
DOI: 10.1063/1.1397289
30.Jia, Z.; Arcangeli, A.; Tao, X.; Zhang, J.; Dong, C.; Jiang, M.;
Bonelli, L.; Tonelli, M.; J. Appl. Phys., 2009, 105, 083113.
DOI: 10.1063/1.3115442
31.Liégard, F.; Doualan, J.; Moncorgé, R.; Bettinelli, M.; Appl. Phys.
B, 2005, 80, 985.
DOI: 10.1007/s00340-005-1829-y
32.Lurin, C.; Parent, C.; Le Flem, G.; Hagenmuller, P.; J. Phys.
Chem. Solids, 1985, 46, 1083.
DOI: 10.1016/0022-3697(85)90024-1
33.Miller, J.; Sharp, E.; J. Appl. Phys., 1970, 41, 4718.
DOI: 10.1063/1.1658520
34.Rast, H.; Caspers, H.; Miller, S.; J. Chem. Phys., 1967, 47, 3874.
DOI: 10.1063/1.1701548
35.Rivera-López, F.; Babu, P.; Basavapoornima, C.; Jayasankar, C.;
Lavín, V.; J. Appl. Phys., 2011, 109, 123514.
DOI: 10.1063/1.3580475