Authors

1 Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India Nanomaterials and Device Fabrication Laboratory, Center for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, 751030, India

2 Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India

Abstract

The development of micro-supercapacitor (µ-SC) based on silicon nanowires (SiNWs) has increased the demands of
cost-effective methods via low temperature processing routes for the fabrication of SiNWs which can enable the realization of µ-SC directly on a Si chip. In this work, SiNWs synthesized by hot-wire chemical vapor processing (HWCVP) at low substrate temperature of 350 oC have been explored as the electrodes for the use in µ-SC. Electrochemical behavior was tested by using cyclic voltammetry (CV) and galvanostatic charging/discharging in an ionic electrolyte. TEM characterization reveals as-grown SiNWs have inner crystalline core (c-core) sheeted with an amorphous layer of silicon (a-Si) which has poor electrical conductivity and reduces the capacitance of SiNWs. Copyright © 2017 VBRI Press.

Keywords

1.Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P; Gogotsi, Y;
Science, 2010, 328, 480.

DOI:10.1126/science.1184126.

2.Jiang, Y. Q.; Zhou, Q.; Lin, L. Planar MEMS supercapacitor using
carbon nanotube forests, 22nd International Conference on Micro
Electro Mechanical Systems (MEMS), IEEE, 2009, 587.

DOI:10.1109/MEMSYS.2009.4805450.

3.Westover, A. S; et al; Nanoscale, 2015, 7, 98.

DOI:10.1039/C4NR04720F.

4.Beidaghi, M.; Gogotsi, Y; Energy & Environmental Science2014,
7, 867.

DOI:10.1039/C3EE43526A.

5.Kinoshita, K.; Song, X.; Kim, J.; Inaba, M; Journal of Power
Sources, 1999, 170, 81.

DOI:10.1016/S0378-7753(99)00189-5.

6.Su, X. et al; A Review. Advanced Energy Materials, 2014, 4,
1300882.

DOI:10.1002/aenm.201300882.

7.Chen, T.; Dai, L; Materials Today, 2013, 16, 272.

DOI:10.1016/j.mattod.2013.07.002.

8.Mc Donough, J. R. et al; Applied Physics Letters, 2009, 95,
243109.

DOI:10.1063/1.3273864.

9.Obreja, V. V. N. Physica E; Low-dimensional Systems and
Nanostructures, 2008, 40, 2596.

DOI:10.1016/j.physe.2007.09.044.

10.Korenblit, Y. et al; ACS Nano, 2010, 4, 1337.

DOI:10.1021/nn901825y.

11.Aradilla, D.; Delaunay, M.;Sadki, S.; Gerard, J.-M.; Bidan, G;
Journal of Materials Chemistry A, 2015, 3, 19254.

DOI:10.1039/C5TA04578A.

12.Choi, J. W. et al; Nano Lett, 2010, 10, 1409.

DOI:10.1021/nl100258p.

13.Thissandier, F. et al; Nano Energy, 2014, 5, 20.

DOI:10.1016/j.nanoen.2014.01.005.

14.Thissandier, F.; Pauc, N.; Brousse, T.; Gentile, P.; Sadki, S;
Nanoscale Research Letters, 2013, 8, 1.

DOI:10.1186/1556-276x-8-38.

15.Alper, J. P.; Vincent,M.; Carraro, C.; Maboudian, R; Appl Phys
Lett., 2012, 100, 163901.

DOI:10.1063/1.4704187.

16.Alper, J. P. et al.; Nano Letters, 2014, 14, 1843.

DOI:10.1021/nl404609a.

17.Dubal, D. P. et al.; Energy Technology, 2014, 2, 325.

DOI:10.1002/ente.201300144.

18.Jost, K.; Dion, G.; Gogotsi, Y; Journal of Materials Chemistry A.,
2014, 2, 10776.

DOI:10.1039/C4TA00203B.

19.Nathan, A. et al.Flexible Electronics: The Next Ubiquitous
Platform. Proceedings of the IEEE, 2012, 100, 1486.

DOI:10.1109/JPROC.2012.2190168.

20.Amar, A.; Kouki, A.; Cao, H.; Sensors, 2015,15, 28889.

DOI:10.3390/s151128889

21.Hannan, M. A.; Mutashar, S.; Samad, S. A.; Hussain, A.
BioMedical Engineering OnLine, 2014, 13, 1.

DOI:10.1186/1475-925x-13-79.

22.Meshram,N.; Kumbhar, A.; Dusane, R. O.; Materials Research
Bulletin, 2013, 48, 2254.

DOI:10.1016/j.materresbull.2013.02.012.

23.Soam, A.; Dusane, R. O. Charge storage properties of SiNWs
grown by hot-wire chemical vapor process technique as electrodes
in electrochemical capacitors, International Conference on
Advanced Nanomaterials and Emerging Engineering Technologies
(ICANMEET2013), IEEE, 2013, 416.

DOI:10.1109/ICANMEET.2013.6609333.

24.Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U.; Advanced
Materials, 2009, 21, 2681.

DOI: 10.1002/adma.200803754.

25.Misra, S.; Yu, L.; Chen, W.; Roca iCabarrocas, P; The Journal of
Physical Chemistry C, 2013, 117, 17786.

DOI:10.1021/jp403063d.