Document Type : Research Article

Authors

1 Miranda House, Chemistry Department, University of Delhi, Patel Chest Marg, New Delhi 110007, India

2 The Shri Ram School, Chemistry Department, Gurgaon 122002, India

Abstract

The copper (II)  extended  metal organic frameworks with oxalic acid ( ox  = oxalate ) [Na 2 ( Cu ( ox) 2 ].H2O and
[ (NH4)2 ({ Cu ( ox)2(H2O)2}{ Cu( ox)2 }] .H2O have been synthesized  using electrochemical route at room temperature and applied potential at 12.5 V. Herein copper rod has taken as a working electrode and platinum wire as a reference electrode. The single crystal X-ray diffraction (SXRD) and other supportive techniques like as PXRD, TGA/DTA, FT-IR have been used for structural characterizations. Metal organic frameworks (MOFs) are crystalline in nature where the ligands and metal ions are assembled infinitely resulting in one, two or three-dimensional networks having direct metal-ligand coordination. The growth of the solids has been explained corresponding to the mechanistic approach proposed by Ramanan and Whittingham. The crystal packing has been influenced by the supporting electrolyte. The electrolytic method is a simple process, low energy consumption, high yield, easy control and no environmental pollution. Copyright © 2018 VBRI Press

Keywords

1.MacGillivray, L. R.(Eds.); Metal-Organic Frameworks: Design
and Application; John Wiley & S
ons: Hoboken,New Jersey,
USA,
2010.
2.
Collins, D. J.; Hong-Cai Zhou, H.C.; J. Mater. Chem.,2007, 17,
3154.

3.
Bhattacharya, S.;Bala, S.; Mondal, R.;RSC Adv.,2016, 6(30),
25149.

4.
Sukhen Bala, S.; Indranil Mondal, I.; Goswami, A.; Ujjwal Pal,
U.; Mondal,
R.;J.Mater. Chem. A,2015, 3(40), 20288.
5.
Bala, S.; Bhattacharya, S.; Goswami, A. ; Adhikary, A.; S.
Konar, S.; Mondal, R.
; Cryst. Growth Des.,2014, 14 (12),
6391.

6.
Butler, K. T.; Hendon, C.; Walsh, A.;J. Am. Chem. Soc., 2014,
136
, 2703.
7.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M.;
Science
,2013, 341, 1230444.
8.Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi,
E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.;
Yaghi, O. M. ; Science , 2010,329,424.

9.Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O.
K.; Yildirim, T. ; J. Am. Chem. Soc.,2013, 135, 11887.

10.Brozek, C.; Dincă, M.; J. Am. Chem. Soc.,2013, 135, 12886.

11.Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F. X.;
García, H.; Chem. Eur. J., 2007, 13, 5106.

12.Nijem, N.; Wu, H.; Canepa, P.; Marti, A.; Balkus, K. J.;
Thonhauser, T.; Li, J.; Chabal, Y. J.; J. Am. Chem. Soc.,2012,
134, 15201.

13.
Hendon, C. H.; Tiana, D.; Walsh, A.;Phys. Chem. Chem. Phys.,
2012
, 14, 13120.
14.Dhakshinamoorthy,A.; Alvaro, M.; Garcia, H.;Chem.
Commun., 2012,48, 11275.

15.Zhan, W. W.; Kuang, Q.; Zhou, J.-Z.; Kong, X.-J.; Xie, Z.-X.;
Zheng, L.-S. ; J. Am. Chem. Soc., 2013, 135, 1926.

16.
Llabrés i Xamena, F. X.; Corma, A.; Garcia, H.;J. Phys. Chem.
C
,2007, 111,80.
17.Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki,K.; Iwata, M.;
Higashimura, H.; Anpo, M.; Matsuoka, M.; J. Phys. Chem. C,
2012, 116, 20848.

18.
Davydovskaya, P.; Pohle, R.; Tawil, A.; Fleischer, M.;Sensor.
Actuat. B Chem.
,2013, 187, 142.
19.
Hutchins, K. M.;Rupasinghe, T. P.;Ditzler, L. R.; Swenson, D.
C.; Sander, J.
R.;Baltrusaitis, J.;Tivanski, A. V.; MacGillivray,
L. R.
; J. Am. Chem. Soc.,2014, 136(19), 6778.
20.Hoskins, B. F.; Robson, R.;J. Am. Chem. Soc.,1990, 112, 1546.

21.Fujita M.; Kwon, Y. J.; Washizu, S.; Ogura, K.; J. Am.
Chem.
Soc.
,1994, 116, 1151.
22.Yaghi, O. M.; Li, G.; Li, H.; Nature,1995, 378, 703.

23.Gardner, D. G. B.; Lee, S.; Moore, J. S.;J. Am.Chem. Soc.,
1995, 117, 11600.

24.
Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.;
Kitagawa,S.
; Angew. Chem.,1997, 109, 1844. Angew. Chem.,
Int. Ed.
Engl. 1997, 36, 1725.
25.Schmidt,G. M.J.; J.Pure Appl. Chem.,1971,27, 647 (b)
Deshraju, G.R. Crystal Engineering:TheDesign of Organic
Solids; Elsevier: Amsterdam,1989.

26.Janiak, C.; Dalton Trans.,2003, 14,2781.

27.Nishio, M.; Cryst .Eng. Comm.,2004, 6, 130.

28.Desiraju,G.R.;J. Mol. Struct.,2003, 656, 5.

29.Moulton, B.; Zaworotko, M. J.Chem.Rev.,2001, 101,1629.

30.(a) Steiner, T. Angew.Chem.,Int. (Ed.), 2002, 41, 48. (b)
Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological
Structure; Springer: Berlin, 1991.

31.Holman, K. T.; Pivovar, A.M.; Swift, J.A.; Ward, M.D.; Acc.
Chem. Res.,2001, 34, 107.

32.(a) Beatty, A.M.; Coord. Chem.Rev. 2003, 246, 131 (b) Sharma,
C.V.K.; Cryst. Growth Des.,2002, 2, 465. (c) Aakeroy, C.B.;
Salmon,D.J.;Cryst. Eng. Comm.,2005, 7, 439.

33.
Ward, M.D.; Chem. Commun.,2005, 47,5838.
34.
Ramanan, A.; Whittingham, M. S.; Cryst. Growth Des.,2006, 6,
2419.

35.
Hutchins, K. M.;Rupasinghe, T.P.; Ditzler, L.R.; Swenson, D.
C.;
Sander, J.R.; Baltrusaitis, J.; Tivanski, A. V.; MacGillivray,
L. R.
; J. Am. Chem. Soc.,2014, 136(19), 6778.
36.Hoskins, B. F.; Robson, R.;J. Am. Chem. Soc., 1990, 112, 1546.

37.Fujita M.; Kwon, Y. J.; Washizu, S.; Ogura, K.; J. Am.
Chem.
Soc.
,1994, 116, 1151.
38.Yaghi, O. M.; Li, G.; Li, H.;Nature,1995, 378, 703.

39.Gardner, D. G. B.; Lee, S.; Moore, J. S.;J. Am.Chem. Soc.,
1995, 117, 11600.

40.
Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.;
Kitagawa,S.
;Angew. Chem.,1997, 109, 1844. Angew. Chem.
Int. Ed.
Engl. 1997, 36, 1725.
41.Schmidt,G. M. J.Pure Appl. Chem.,1971,27 647 (b) Deshraju,
G.R.;Crystal Engineering: The Design of Organic Solids;
Elsevier : Amsterdam,1989.

42.Nishio, M.;Cryst .Eng. Comm., 2004, 6, 130.

43.Desiraju,G.R.;J. Mol. Struct., 2003, 656, 5 .

44.Moulton, B.; Zaworotko, M.;J.Chem.Rev., 2001, 101,1629.

45.SAINT+, Bruker Analytical X-Ray Systems;Madison, WI,
2001.

46.
Sheldrick, G. M. SHELX-9;Bruker Analytical X-Ray Systems;
Madison, WI,
1997
47.
Bala, S.;Bhattacharya, S.;Goswami, A. ;Adhikary, A.;Konar,
S.
; Mandal, R.;Cryst. Growth Des.,2014,14(12), 6391.
48.
Viswamitra, M.A.; J. Chem. Phys., 1962,37, 1408.
49.
Jeffrey, G.A.; Parry, G.S.; J. Chem. Soc.,1952,0, 4864,
DOI:
10.1039/JR9520004864.