Document Type : Research Article

Authors

1 Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, Lanzhou 730000, P.R. China

2 R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics,Chinese Academy of Science, Lanzhou 730000, P.R. China

3 Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China

4 R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P.R. China

Abstract

In this paper, we developed a simple mechanical/chemical process to efficiently disperse palygorskite (PAL) crystal bundles into individual nanorods. The “cavity effect” of high-pressure homogenization process generated many “Miniature bombs” in the interior gap of crystal bundles, which may mildly “blast” and effectively burst through the hugged PAL rod crystals without losing their original aspect ratio. Sodium metaaluminate (SM) was simultaneously introduced in the high-pressure homogenization process to promote the dispersion of crystal bundles and restrain the re-aggregation of dispersed nanorods. The dispersion degree and surface charge of PAL nanorods were greatly improved, and the colloidal viscosity of aqueous suspension of highly dispersed PAL rods greatly enhanced by 148% in contrast to raw PAL aggregates. Also, the colloidal stability and rheological properties of PAL were clearly improved after dispersion. As a whole, this process can produce PAL nanorods in an industrial scale, which opens a new avenue to extend the application of PAL in many industrial areas such as fine chemicals, functional carriers and nanocomposites. Copyright © 2018 VBRI Press.

Keywords

1.Baltar, C. A. M.;da Luz, A. B.;Baltar, L. M.;de Oliveira, C. H.;
Bezerra, F. J. Appl.Clay Sci.,2009, 42(3), 597.

DOI:10.1016/j.clay.2008.04.008

2.Neaman,A.;Singer, A.Appl.Clay Sci.,2004,25,121.

DOI:10.1016/j.clay.2003.08.006

3.Liu, Y.;Xu, J.X.;Wang,W.B.;Wang,A.Q. J. Dispers. Sci.
Technol.,2014, 35,840.

DOI:10.1080/01932691.2013.818547

4.Ruiz-Hitzky, E.;Darder, M.;Fernandes, F. M.;Wicklein, B.;
Alcântara,A.C.S.;Aranda, P.Prog.
Polym.Sci.,2013, 38,1392.
DOI:10.1016/j.progpolymsci.2013.05.004

5.Wang,J.H.;Chen,D.J. J.Nanomater.2013,496584.

DOI:10.1155/2013/496584

6.Chen, L.;Liu, K.;Jin, T. X.;Chen,F.;Fu, Q.eXPRESS Polym.
Lett.,2012,6,629.

DOI:10.3144/expresspolymlett.2012.67

7.Huang, D.J.;Wang, W.B.;Xu J.X.;Wang,A.Q.Chem.Eng.J.,
2012, 210,166.

DOI:10.1016/j.cej.2012.08.096

8.Sarkar, B.;Megharaj, M.;Xi,Y.F.;Naidu, R.Chem.Eng.J.,
2012, 185186,35.

DOI:10.1016/j.cej.2011.05.062

9.Wang, W.B.; Tian, G.Y.; Zhang, Z.F.; Wang, A.Q. Chem. Eng.
J., 2015, 265, 228.

DOI:10.1016/j.cej.2014.11.135

10.Middea, A.;Fernandes, T.L.;Neumann, R.;GomesO.D.F.;
Spinelli, L.S.Appl.Surf.Sci.,2013, 282, 253.

DOI:10.1016/j.apsusc.2013.05.113

11.Wang, W.B.;Wang, F.F.;Kang Y.R.;Wang, A.Q. RSC Adv.,
2013, 3,11515.

DOI:10.1039/C3RA41836G

12.Bouna, L.;Rhouta, B.;Amjoud, M.;Maury, F.;Lafont, M.-C.;
Jada, A.;Senocq,F.;Daoudi, L.Appl.Clay Sci.,2011, 52, 301.

DOI:10.1016/j.clay.2011.03.009


















13.Zhou, J.;Liu, N.;Li, Y.;Ma, Y.J.Microstructure characteristics
of attapulgite clay. Bulletin of the Chinese Ceramic Society
(Chinese), 1999, (6), 50.

14.Darvishi, Z.;Morsali, A. Appl. Clay Sci.,2011, 51,51.

DOI:10.1016/j.clay.2010.10.032

15.Liu, Y.;Wang, W.B.;Wang, A.Q. Powder Technol., 2012, 225,
124.

DOI:10.1016/j.powtec.2012.03.049

16.Boudriche, L.;Chamayou, A.;Calvet, R.;Hamdi, B.;Balard,H.
Powder Technol., 2014, 254, 352.

DOI:10.1016/j.powtec.2014.01.041

17.Wang, S. Influence of mechanical squeezing on viscidity of
attapulgite (Chinese). China Non-metallic Mining Industry
Herald, 2005, (3),23-24.

18.Chen, J.;Jin, Y.;Qian, Y.;Hu, T.IEEE T.Nanotechnol., 2010,
9,6.

DOI:10.1109/TNANO.2009.2033675

19.Floury, J.;Desrumaux, A.;Axelos, M.A.V.; Legrand, J.J.Food
Eng.,2003, 58,227.

DOI:10.1016/S0260-8774(02)00372-2

20.Xu, J.X.;Zhang, J.P.;Wang,Q.;Wang, A.Q.Appl.Clay Sci.,
2011, 54,118.

DOI:10.1016/j.clay.2011.07.020

21.Chisholm, J.E. Can. Mineralogist,1992, 30,61.

22.Boudriche, L.;Hamdi, B.;Kessaïssia, Z.;Calvet, R.;Chamayou,
A.;Dodds, J.A.;Balard, H. Clay Clay Miner., 2010, 58,143.

DOI:10.1346/CCMN.2010.0580201

23.Chahi, A.;Petit,S.;decarreau, A.Clays Clay Miner.,2002, 50,
306.

DOI:10.1346/00098600260358067

24.Yan, W.C.;Liu, D.;Tan, D.Y.;Yuan,P.;Chen, M. Spectrochim.
Acta A, 2012, 97,1052.

DOI:10.1016/j.saa.2012.07.085

25.White, B.;Banerjee, S.;O’Brien, S.;Turro,N.J.; Herman, I.P.J.
Phys. Chem.C,2007, 111,13684.

DOI:10.1021/jp070853e

26.Rouquerol, J.;Rouquerol, F.;Llewellyn, P.;Maurin, G.;Sing,
K.S. Adsorption by powders and porous solids: principles,
methodology and applications, Academic Press, 2013.

27.Haden, W.L.;Schwint, I.A. Ind. Eng. Chem., 1967, 59,59.

28.Rao, F.;Ramirez-Acosta, F.J.;Sanchez-Leija, R.J.;Song,S.;
Lopez-Valdivieso, A.Appl.Clay Sci.,2011, 51,38.

DOI:10.1016/j.clay.2010.10.023

29.Zeng, Y.P.;Zimmermann, A.;Aldinger, F;Jiang, D.L.J.Eur.
Ceram.Soc.,2008, 28,2597.

DOI:10.1016/j.jeurceramsoc.2008.03.043

30. Eriksson, R.;Kokko,A.;Rosenholm,J.B.Langmuir,2010, 26,
7946.

DOI: 10.1021/la9048117

31. Van Olphen, H. An Introduction to Clay Colloid Chemistry,
second ed. John Wiley & Sons, New York, 1977.

32.Herschel,W.;Bulkley,R.Colloid Polym. Sci.,1926, 39,
291300.

33.Coussot,P.;Piau,J.M.Rheol. Acta,1994, 33, 175.

34.Luckham,P.F.;Rossi,S.Adv. Colloid Interf. Sci.,1999, 82,43.

35.Abu-Jdayil,B.Int. J. Miner. Process,2011, 98,208.

36.Haden Jr,W. L.Clays Clay Miner.,1963, 284.