International Association of Advanced Materials
  • Register
  • Login

Advanced Materials Proceedings

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 3, Issue 5
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Publication Ethics

Peer Review Process

News

Disclaimer

Diamond Open Access

Terms & Condition

A comparative study on NiO nanocrystal modified graphite and Au electrode matrices as immobilization supports for laccase enzyme in amperometric biosensing for catechol detection

    C. Sarika M.S. Shivakumar Lakhirupa Devi K. Rekha B. Narasimhamurthy Sabu Thomas Nandakumar Kalarikkal I. C. Lekshmi

Advanced Materials Proceedings, 2018, Volume 3, Issue 5, Pages 304-311
10.5185/amp.2018/834

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

A comparative study of the electrochemical behaviours of two different electrode matrices used in the construction of amperometric laccase biosensors is reported here for catechol detection in water. The matrices considered are NiO nanocrystal (NC) modified graphite electrode (MCPE-NiO) and Au electrode of Clark type DO sensor. The laccase enzyme from Trametes versicolour was immobilized on electrode surfaces by co-crosslinking method using bovine serum albumin, a protein-based stabilizer, along with glutaraldehyde as the crosslinking agent. A comparison of the stability parameters of the electrode designs was carried out including sensitivity, calibration plots, analytical data and storage stability, and the biosensor performance was shown to be superior for MCPE-NiO-Lac compared to Au-Lac electrode. The NC modified system reached steady state within 6 seconds after the analyte contact and displayed a lower detection limit of 0.95 μM, while the Au electrode took 3 minutes to reach the same and had lower detection limit of 4 μM. Better reproducibility and longer linear response was also observed for MCPE-NiO system compared to the latter, all of which could be attributed to the microstructure of the electrode and the surface lattice arrangement in the embedded nanocrystals. Copyright © 2018 VBRI Press.
Keywords:
    Amperometric biosensor laccase enzyme NiO nanocrystals clark type DO sensor au electrode carbon paste electrode catechol detection
  • PDF (811 K)
  • XML
(2021). A comparative study on NiO nanocrystal modified graphite and Au electrode matrices as immobilization supports for laccase enzyme in amperometric biosensing for catechol detection. Advanced Materials Proceedings, 3(5), 304-311. doi: 10.5185/amp.2018/834
C. Sarika; M.S. Shivakumar; Lakhirupa Devi; K. Rekha; B. Narasimhamurthy; Sabu Thomas; Nandakumar Kalarikkal; I. C. Lekshmi. "A comparative study on NiO nanocrystal modified graphite and Au electrode matrices as immobilization supports for laccase enzyme in amperometric biosensing for catechol detection". Advanced Materials Proceedings, 3, 5, 2021, 304-311. doi: 10.5185/amp.2018/834
(2021). 'A comparative study on NiO nanocrystal modified graphite and Au electrode matrices as immobilization supports for laccase enzyme in amperometric biosensing for catechol detection', Advanced Materials Proceedings, 3(5), pp. 304-311. doi: 10.5185/amp.2018/834
A comparative study on NiO nanocrystal modified graphite and Au electrode matrices as immobilization supports for laccase enzyme in amperometric biosensing for catechol detection. Advanced Materials Proceedings, 2021; 3(5): 304-311. doi: 10.5185/amp.2018/834
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

1.Michalowics, J; Duda, W; Polish J.of Environ.Stud., 2007, 16,
347-362.

2.Sanchez-Avila, J;Fernandez-Sanjuan, M;Vincente, J;Lacorte,S;
J.Chromatogr.A, 2011,1218, 6799-6811.

DOI:
10.1016/j.chroma.2011.07.056

3.Tanigawa, T;Watabe, Y;Kubo, T;Hosoya, K;J.Sep.Sci., 2011,

34, 2840-2846.
DOI: 10.1002/jssc.201100418

4.Karim, F;Fakhruddin, A. N. M;Rev.Environ.Sci.Biotechnol.,
2012, 11, 261–274.

DOI: 10.1007/s11157-012-9268-9

5.Abhijith,K. S.;Kumar,P. V. S;Kumar,M. A.;Thakur,M. S.;
Anal. Bioanal. Chem.,2007,389, 2227-2234.

DOI: 10.1007/s00216-007-1604-5

6.Claus, H;Micron.,2004,35,93–96.

DOI: https://doi.org/10.1016/j.micron.2003.10.029

7.Svancara, I.; Vytras, K.I.; Barek, J.; Zima, J.; Crit. Rev. Anal.
Chem., 2001, 31, 311.

DOI:
10.1080/20014091076785
8.Krajewska, B.;Enzyme Microb. Technol.,2004, 35,126-139.

DOI: 10.1016/j.enzmictec.2003.12.013

9.Uslu, B; Ozkan, S.A.;Analytical Letters, 2007, 40, 817-853.

DOI:10.1080/00032710701242121

10.Palanisamy, S.; Ramaraj, S. K.; Chen, S. M.; Yang, T. C. K.; Fan,
P. Y.; Chen, T. W.; Velusamy, V.;Selvam S.;Sci. Rep., 2017,7,
1-12

DOI:10.1038/srep41214

11.Zhu, C.;Yang, G.;Li, H.;Du, D.;Lin, Y.;Anal. Chem., 2015, 87,
230–249,.

DOI: 10.1021/ac5039863

12.Sarika, C.;Shivakumar, M. S.;Shivakumara, C.;Krishnamurthy,
G.;Murthy, B. N.;Lekshmi, I. C.;Artif. Cells Nanomed. and
Biotech., 2017, 45(3), 625-634.

DOI:
10.3109/21691401.2016.1167702
13.Pingarrón, J. M.;Sedeño, P.Y.;Cortés, A. G.;Electrochimica
Acta, 2008, 53(19), 5848.

DOI: 10.1016/j.electacta.2008.03.005

14.Ciucu,A. A.;J.Biosens. Bioelectron., 2014, 5, 154.

DOI: 10.4172/2155-6210.1000154

15.Zhang, Y.;Gui, Y.;Wu, X.;Feng, H.;Zhang, A.;Wang, L.;Xia,
T.; Int.J.Hydrogen Energy,2009, 34,2467–2470.

DOI:10.1016/j.ijhydene.2008.12.078

16.Noorbakhsh,A.;Salimi,A.;Biosens. Bioelectron., 2011,
30,188-
196.

DOI:10.1016/j.bios.2011.09.010

17.
Wang, J.;Study of Electrode Reactions and Interfacial Properties,
In Analytical Electrochemistry;
Third Edition;John Wiley & Sons,
In
c.:USA, 2006, pp 29-66.
DOI:10.1002/0471790303.ch2

18.Li,F.;Li,J.;Feng,Y.;Yang,L.;Du,Z.;Sens.Actuators B:Chem.,
2011, 157, 110–114.

DOI:10.1016/j.snb.2011.03.033

19.Zheng,Y. Z.;Zhang,M. L.;Mater.Lett., 2007, 61, 3967–3969.

DOI: 10.1016/j.matlet.2006.12.072

20.Sarika, C.;Shivakumar, M. S.;Rudra, I.;Konwar, S. B.;
Shivakumara, C.;Murthy, B. N.; Thomas, S.; Kalarikkal, N.;
Lekshmi, I. C. (to be submitted).

21.Song, M. J.;Kim,J.;Lee,S.;Lee, J. H.; Lim, D.; Hwang, S.;
Whang, D.;Microchim Acta.,2010, 171,249–255.

DOI: 10.1007/s00604-010-0432-z

22.Sarika,C.;Rekha,K.; Murthy B.N.;3 Biotech., 2015, 5, 1-14.

DOI
: 10.1007/s13205-015-0292-7
23.Sarika,C.;Rekha,K.; Murthy B. N.;Artif.cells Nanomed.
Biotechnol., 2016, 44, 1741-52.

DOI:10.3109/21691401.2015.1096793

24.
Silverstein,R. M.;Webster,F. X.;Kiemle,D. J.; Spectrometric
Identification of
Organic Compounds,7th Edition,John Wiley &
Sons
: New York, 2005.
25.Li, D.; Luo,L.;Peng, Z.; Ding,L.;Wang, Q.; Ke,H.; Huang,F.;
Wei,Q.; Appl. Mater. Interfaces, 2014, 6, 5144−5151.

DOI:
10.1021/am500375n
26.Li, C.; Liu, Y.; Li, L.; Du, Z.; Xu, S.; Zhang, M.; Yin, X.; Wang,
T.; Talanta, 2008, 77, 455–459.

DOI: 10.1016/j.talanta.2008.06.048

27.Liu, T.;Tranca, I.;Yang, J.;Zhou, X.;Li, C.;J. Mater. Chem. A,
2015,3, 10309-10319.

DOI:10.1039/C5TA02193F

  • Article View: 25
  • PDF Download: 6
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus