Authors

1 Department of Physics, Jamia Millia Islamia, New Delhi 110025, India

2 Advanced Material Research Group, CNT Lab, ABV-Indian Institute of Information Technology and Management,

Abstract

Surface metal adsorption on 2D structures is demonstrated to be an effective tool for improving hydrogen storage capacity. In the current work, the behavior of Ca atom adsorption on monolayer MoS2 is studied and subsequently its hydrogen storage capacity is investigated computationally using van der Waals (vdW) revised Density Functional Theory. It is found that the Ca binds strongly with the MoS2 monolayer without being clustered, leading to high hydrogen storage capacity. It is further shown that five hydrogen molecules to each Ca atom can be adsorbed with the average adsorption energy of 0.23eV per hydrogen molecule, indicating it to be a good choice for reversible adsorption/desorption of H2 molecules at ambient conditions. It is revealed that hybridizations between s orbitals of H2 and p orbitals of S are also responsible for adsorption mechanism, along with coulomb interactions. It is demonstrated that a steady and uniform high Ca coverage can be achieved without clustering and with enhanced binding energy which can be used as high hydrogen capacity storage system. Copyright © 2018 VBRI Press.

Keywords

(a) Book Chapters
1.
Franzen, J.; Maus, S.; Potzel, P.Hydrogen Storage in Vehicles, In
Hydrogen Science and Engineering : Materials, Processes, Systems

and Technology; Stolten, D.; Emonts, B. (Eds.); Wiley: Weinheim,

Germany,
2016, pp. 691-709.
DOI:10.1002/9783527674268.ch28
2. Walker, G. Hydrogen Storage technologies, In Solid-State
Hydrogen Storage; Walker, G. (Eds.); Woodhead
Publishing,
2008
, pp. 3-17.
DOI:10.1533/9781845694944.frontmatter


(b) Scientific articles

3. Zacharia, Renju; Rather, Sami ullah; J. Nanomater., 2015, 2015,
914845

DOI:
10.1155/2015/914845
4.
Yang, Jun; Sudik, Andrea; Wolveton, Christopher; Siegel, Donald
J.;
Chem. Soc. Rev., 2010, 39, 656.
DOI:10.1039/B802882F
5.
Kim, Yong-Hyun; Zhao, Yufeng; Williamson, Andrew; Heben,
Michael J.; Zhang, S. B.;
Phys. Rev. Lett., 2006, 96, 016102.
DOI:10.1103/PhysRevLett.96.01610
6.
Ao, Z. M.; Peeters, F. M.; Phys. Rev. B, 2010, 81, 205406.
DOI:10.1103/PhysRevB.81.205406
7. Song, Nahong; Wang, Yusheng; Zheng, Yafeng; Zhang, Jing; Xu,
Bin; Sun, Qiang; Jia, Yu;
Comput. Mater. Sci, 2015, 99, 150.
DOI: 10.1016/j.commatsci.2014.12.016
8.
Koh, Eugene WaiKeong; Chiu, Cheng Hsin; Lim, Yao Kun;
Zhang, Yong
-Wei; Pan, Hui; Int. J. Hydrogen Energy, 2012, 37,
14323.

DOI:10.1016/j.ijhydene.2012.07.069
9.
Cabria, I; Lopez, M. J.; Alonso, J. A.; J. Chem. Phys., 2005, 123,
204721.

DOI:10.1063/1.2125727
10.
Wang, Yanzong; Wang, Baolin; Huang, Rui; Zhang, Qingfang;
Phys. E (Amsterdam, Neth.)
, 2014, 63, 276.
DOI:10.1016/j.physe.2014.06.017
11.
Li, X. D.; Fang, Y. M.; Wu, S. Q.; Zhu, Z.Z.; AIP Adv., 2015, 5,
057143

DOI:10.1063/1.4921564
(all metals adsorption)

12. Chen, X.; Yuan, F.; Gu, Q.; Yu, X.; J. Mater. Chem. A, 2013, 1,
11705.

DOI:10.1039/C3TA11940H
13. Gao, F.; Ding, Z.; Meng, S.; Sci. Rep.,2013, 3, 1882.

DOI:
10.1038/srep01882
14. Park, N.; Choi, K.; Hwang, J.; Kim, D. W.; Kim, D. O.; Ihm, J.;
Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 19893.

DOI:
10.1073/pnas.1217137109
15. Hussain, T.; Pathak, B.; Ramzan, M.; Maark, T. A.; Ahuja, R.;
Appl. Phys. Lett., 2012, 100, 183902.

DOI: 10.1063/1.4710526
16. Sorokin, P. B.; Lee, H.; Antipina, L. Y.; Singh, A. K.; Yakobson,
B. I.; Nano Lett.,2011, 11, 2660.

DOI:10.1021/nl200721v
17. Li, Chong; Li, Jingbo; Wu, Fengmin; Li, Shu-Shen; Xia, Jian-Bai;
Wang, Lin-Wang; J. Phys. Chem. C, 2011, 115, 2322123225.

DOI: 10.1021/jp208423y

18.
Gao, Yan; Zhao, N. Q.; Li, Jiajun; Shi, Chunsheng; Int. J.
Hydrogen Energy
, 2012, 37, 11835.
DOI:10.1016/j.ijhydene.2012.05.029
19.
Er, Suleyman; A. de Wijs, Gilles; Brocks, Geert; J. Mater. Chem.
A,
2015, 3, 7710.
DOI:10.1039/c4ta06818a
20.
Lee, Hoonkyung; Ihm, Jisoon; Cohen, Marvin L.; Louie, Steven
G.;
Nano lett., 2010, 10, 793.
DOI:10.1021/nl902822s
21. Putungan, Darwin Barayang; Lin, Shi-Hsin; Wei, Ching-Ming;
Kuo, Jer-Lai; Phys. Chem. Chem. Phys., 2015, 17, 11367.

DOI: 10.1039/C5CP00977D
22.
Song, Nahong; Wang, Yusheng; Gao, Haiyang; Jiang, Weifen;
Zhang, Jing; Xu, Bin; Sun, Qiang; Jia, Yu;
Phys. Lett. A, 2015,
379, 815.

DOI:10.1016/j.physleta.2014.12.045
23. Kresse, G.; Furthmuller, J.; Phys. Rev. B, 1996, 54, 11169.

DOI:10.1103/PhysRevB.54.11169
24.
Grimme, Stefan; J. Comput. Chem., 2006, 27, 1787.
DOI:10.1002/jcc.20495
25.
Gupta, Tapan K.;Phys. Rev. B,1991, 43, 5276.
DOI:10.1103/PhysRevB.43.5276
26.
Zhao, Shijun; Xue, Jianming; Kang, Wei; Chem. Phys. Lett., 2014,
596, 35.

DOI:10.1016/j.cplett.2014.01.043
27.
Boker,Th.;Severin,R.;Muller,A.;Janowitz,C.;Manzke,R.;
Voß,
D.;Kruger,P.;Mazur,A.;Pollmann,J.;Phys.Rev.B,2001,
64,
235305.
DOI:0.1103/PhysRevB.64.235305
28.
Ataca, C.; Aktürk, E.; Ciraci, S.; Phys. Rev. B, 2009, 79, 041406.
DOI:10.1103/PhysRevB.79.041406
29. Henkelman, G.; Arnaldsson, A.; Jonsson, H.; Comput. Mater.Sci.,
2006, 36, 354.

DOI:10.1016/j.commatsci.2005.04.010

30. Song, Nahong; Wang ,Yusheng; Ding, Songyang; Yang, Yuye;
Zhang, Jing; Xu, Bin; Yi, Lin; Jia, Yu; Vacuum, 2015, 117, 63.

DOI:10.1016/j.vacuum.2015.03.03