Document Type : Research Article
Authors
Chemical Engineering Area, CSIR-Central Leather Research Institute, Adyar, Chennai 600020
Abstract
Heterogeneous semiconductor nanomaterials are widely employed nowadays as efficient photocatalysts for selective
organic transformation reactions. A co-precipitation technique was employed for the preparation of ZnO doped
dysprosium oxide from the respectivemetal nitrates and characterization studies were conductedby FT-IR, X-Ray
Differaction, UV-Visible-DRS and FE-SEM analysis. XRD showed the prepared nanomaterial to be in a nano range with
high crystallinity. The particles possesed a spherical morphology and of the order of 40-50 nm(particle size) as
evidenced from FE-SEM analysis. From theUV-Visible-DRS analysis the band gap energy was calculated as 3.15 eV.
The synthesizedZnO doped dysprosium oxide was employed as a photocatalyst under UV light irradiation for selective
organic transformation reaction. Quinones especially benzoquinones are a class of compounds which forms a basic
structural skeleton for various natural compounds. They are widely employed asa precursor for natural products
synthesis. Herein we report the synthesis of N-phenyl-p-benzoquinonimine from diphenylamine by employing ZnO
doped dysprosium oxide as a photocatalyst under UV light irradiation in ethanol. Thin Layer Chromatography was used
to check the progress of the reaction. Optimization studies for the reaction parameters were conducted systematically.
Keywords
2.Fujishima, A.; Honda, K.; Nature,1972, 37,238.
3.Cook, T. R.; Dogutan. D. K.; Reece, S. Y.; Surendranath, Y.;
Teets, T. S.; Nocera, D. G.; Chem. Rev.,2010, 110,6474.
4.Tan, Y. N.; Wong, C. L.; Mohamed,A. R.; ISRN Mater. Sci.,
2011, 2011,18.
5.Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.;
Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.;Byrne, J.
A.; O’shea, K.; Entezari, M. H.; Dionysiou, D. D.; Appl. Catal.
B. Environ.,2012, 125, 331.
6.Devilliers, D.; Energeia,2006, 17, 1.
7.Wang, W. W.; Zhu, Y. J.; Yang, L. X.; Adv. Funct. Mater.,
2007, 17, 59.
8.Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu,
Y.; J. Phys. Chem. C,2010, 114, 7920.
9.Yu, J. G.; Yu, X. X.; Environ. Sci. Technol.,2008, 42,4902.
10.Tseng, T. K.; Lin, Y. S.; Chen, Y. J.; Chu,H.;Int. J. Mol. Sci.,
2010, 11, 2336.
11.Suresh, M.; Sivasamy, A.; J. Environ. Chem. Eng.,2018,6,
3745.
12.Chaudhary, D.; Singh, S.; Vankar, V. D.; Khare. N.;
J. Photochem. Photobiol. A,2018,351, 154.
13.Ramachandran, S.; Sivasamy. A.; ACS Omega,2018,3, 4798.
14.Suganya Josephine, G. A.; Sivasamy, A.; ACS Omega,2018,3,
1090.
15.Egerton, T. A.; Mattinson, J. A.; J. Photochem. Photobiol. A:
Chem.,2008, 194, 283.
16.Ramachandran, S.; Sivasamy, A.; J. Environ. Chem. Eng.,2018,
6, 3770.
17.Suganya Josephine, G. A.; Sivasamy, A.; Appl. Catal. B.
Environ., 2014,150, 288.
18.Meenakshi, G.; Sivasamy, A.; Suganya Josephine, G. A.;
Kavitha. S.; J.Mol. Catal. A.Chem.,2016,411, 167.
19.Kraus, G. A.; Mengwasser. J.; Molecules.,2009, 14, 2857.
20.Nawrat, C. C.; Moody. C. J.; Angew. Chem. Int. Ed.,2014,53,
2056.
21.Karunakaran, C.; Karuthapandian, S.; Sol. Energy Mater. Sol.
Cells,2006,90, 1928.
22.Karunakaran, C.; Karuthapandian, S.; J.Taliba.Univ. Sci.,
2015,9, 513.
23.Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng,
Y.; Ding, J.; Powder Technol., 2009,189, 426.
24.Zhang, Y.; Zhang, K. L.; Jia, M. K.; Tang, H.; Sun, J. T.; Yuan,
L. J.; Chin. Chem. Lett.,2002,13, 587.
25.Karthikeyan, B.; Suchand Sandeep, C. S.; Pandiyarajan, T.;
Venkatesan, P.; Philip, R.;Appl. Phys. A,2011,102, 115.
26.Parida, K. M.; Dash, S. S.; Das, D. P.; J. Colloid Interface Sci.,
2006, 298, 787.