Chemical Engineering Area, CSIR-Central Leather Research Institute, Adyar, Chennai 600020


Heterogeneous semiconductor nanomaterials are widely employed nowadays as efficient photocatalysts for selective
organic transformation reactions. A co-precipitation technique was employed for the preparation of ZnO doped
dysprosium oxide from the respectivemetal nitrates and characterization studies were conductedby FT-IR, X-Ray
Differaction, UV-Visible-DRS and FE-SEM analysis. XRD showed the prepared nanomaterial to be in a nano range with
high crystallinity. The particles possesed a spherical morphology and of the order of 40-50 nm(particle size) as
evidenced from FE-SEM analysis. From theUV-Visible-DRS analysis the band gap energy was calculated as 3.15 eV.
The synthesizedZnO doped dysprosium oxide was employed as a photocatalyst under UV light irradiation for selective
organic transformation reaction. Quinones especially benzoquinones are a class of compounds which forms a basic
structural skeleton for various natural compounds. They are widely employed asa precursor for natural products
synthesis. Herein we report the synthesis of N-phenyl-p-benzoquinonimine from diphenylamine by employing ZnO
doped dysprosium oxide as a photocatalyst under UV light irradiation in ethanol. Thin Layer Chromatography was used
to check the progress of the reaction. Optimization studies for the reaction parameters were conducted systematically


1.Lang, X.; Chen, X.; Zhao,J.; J. Chem. Soc. Rev.,2014, 43,473.
2.Fujishima, A.; Honda, K.; Nature,1972, 37,238.

3.Cook, T. R.; Dogutan. D. K.; Reece, S. Y.; Surendranath, Y.;
Teets, T. S.; Nocera, D. G.; Chem. Rev.,2010, 110,6474.

4.Tan, Y. N.; Wong, C. L.; Mohamed,A. R.; ISRN Mater. Sci.,
2011, 2011,18.

5.Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.;
Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.;Byrne, J.
A.; O’shea, K.; Entezari, M. H.; Dionysiou, D. D.; Appl. Catal.
B. Environ.,2012, 125, 331.

6.Devilliers, D.; Energeia,2006, 17, 1.

7.Wang, W. W.; Zhu, Y. J.; Yang, L. X.; Adv. Funct. Mater.,
2007, 17, 59.

8.Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu,
Y.; J. Phys. Chem. C,2010, 114, 7920.

9.Yu, J. G.; Yu, X. X.; Environ. Sci. Technol.,2008, 42,4902.

10.Tseng, T. K.; Lin, Y. S.; Chen, Y. J.; Chu,H.;Int. J. Mol. Sci.,
2010, 11, 2336.

11.Suresh, M.; Sivasamy, A.; J. Environ. Chem. Eng.,2018,6,

12.Chaudhary, D.; Singh, S.; Vankar, V. D.; Khare. N.;
J. Photochem. Photobiol. A,2018,351, 154.

13.Ramachandran, S.; Sivasamy. A.; ACS Omega,2018,3, 4798.

14.Suganya Josephine, G. A.; Sivasamy, A.; ACS Omega,2018,3,

15.Egerton, T. A.; Mattinson, J. A.; J. Photochem. Photobiol. A:
Chem.,2008, 194, 283.

16.Ramachandran, S.; Sivasamy, A.; J. Environ. Chem. Eng.,2018,
6, 3770.

17.Suganya Josephine, G. A.; Sivasamy, A.; Appl. Catal. B.
Environ., 2014,150, 288.

18.Meenakshi, G.; Sivasamy, A.; Suganya Josephine, G. A.;
Kavitha. S.; J.Mol. Catal. A.Chem.,2016,411, 167.

Kraus, G. A.; Mengwasser. J.; Molecules.,2009, 14, 2857.
Nawrat, C. C.; Moody. C. J.; Angew. Chem. Int. Ed.,2014,53,
21.Karunakaran, C.; Karuthapandian, S.; Sol. Energy Mater. Sol.
Cells,2006,90, 1928.

22.Karunakaran, C.; Karuthapandian, S.; J.Taliba.Univ. Sci.,
2015,9, 513.

23.Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng,
Y.; Ding, J.; Powder Technol., 2009,189, 426.

24.Zhang, Y.; Zhang, K. L.; Jia, M. K.; Tang, H.; Sun, J. T.; Yuan,
L. J.; Chin. Chem. Lett.,2002,13, 587.

25.Karthikeyan, B.; Suchand Sandeep, C. S.; Pandiyarajan, T.;
Venkatesan, P.; Philip, R.;
Appl. Phys. A,2011,102, 115.
26.Parida, K. M.; Dash, S. S.; Das, D. P.; J. Colloid Interface Sci.,
2006, 298, 787.