Document Type : Research Article
Authors
1 Department of Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India Advance Research Lab, Indian Institute of Technology (ISM), Dhanbad 826004, India
2 Department of Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
3 Advance Research Lab, Indian Institute of Technology (ISM), Dhanbad 826004, India
Abstract
This paper aims to investigate the effect of input parameters on plateau stress and specific energy of thin-wall structure circular mild steel (MS) tube. 32 samples of tube have been fabricated in two sets, one is without weld (WOW) and another is with weld (WW), having same dimensions. The tube was made up of available commercial MS (AISI 1010). During compression test the value of plateau stress and specific energy are obtained at varying input parameters and compared the results between WOW and WW tube samples. And its chemical composition verified with the help of Energy-dispersive X-ray spectroscopy test of the welded joint and parent material. Three optimization techniques are used in this study to validate the experimental results namely Taguchi method, Analysis of variance (ANOVA) and Artificial Neural Network (ANN). Taguchi L16 orthogonal array are used to identify the most effective input parameters which affect the energy absorption behaviour. Percentage contribution of individual input parameters analyzed by ANOVA method and also ANN was performed for non-linear mapping of the input and output parameters which are influenced by compression test. Experimental results have been validated with the optimization technique results and found to be in good agreement with them.
Keywords
Engineering, 2016, 149,559.
2.Rajan, S.P.; Kumaran, S.S.; Kumaraswamidhas, L.A.;
Alexandria Engineering Journal,2016, 55,1187.
3.Cunha, T.V.; Voigt, A.L.; Bohórquez, C.E.N; Journal of
Materials Processing Technology,2016, 231,449.
Copyright © VBRI Press 84
4.Kimura, M.; Ichihara, A.; Kusaka, M.; Kaizu, K.; Materials and
Design, 2012, 38,38.
5.Kannan, S.; Kumaran, S.S.; Kumaraswamidhas, L.A.; J. Alloys
Compd., 2016, 666,131.
6.Manti, R.; Dwivedi, D.K.,; Agarwal, A.; JMEPEG, 2008, 17,
667.
7.Yang, k.; Xu, S.; Shen, J.; Zhou, S.; Xie, Y.M.; Thin-Walled
Structures, 2016, 103,33.
8.Kumaran, S.S.; Muthukumaran, S.; Vinodh, S.; Int J Adv Manuf
Technol, 2011, 57,167.
9.Upadhyay, R.K.; Kumaraswamidhas, L.A.; Ciência &
Tecnologia dos Materiais,2016, 28,47.
10.Kannan, S.; Kumaran, S.S.; Kumaraswamidhas, L.A.; Journal
of Mechanical Science and Technology,2016, 30,1.
11.Tarlochan, F.; Samer, F.; Hamouda, A.M.S.; Ramesh, S.;
Khalid, K.; Thin-Walled Structures,2013, 71,7.
12.Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S.; Procedia Mater.
Sci., 2014, 5,164.
13.Kumaraswamidhas, L.A.; Rajak, D.K.; Das, S; J. Mater. Eng.
Perform., 2016, 25,3430.
14.Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S.; Kumaran, S.S.;
J. Alloys Compd., 2016, 656,218.
15.Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S.; Adv. Mat. Lett.,
2015, 6,80.
16.Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S.; Materials
Today:Proceedings 2016, 3,2207.
17.Kumaran, S.S.; Muthukumaran, S.; Vinodh, S.; J. Alloys
Compd., 2011, 509,2758.
18.Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S.; Adv. Mat. Lett.,
2015, 6,548.
19.Nandagopal, K.; Kailasanathan, C.; J. Alloys Compd., 2016,
682,503.
20.Kumar, C.V.; Muthukumaran, S.; Pradeep, A.; Kumaran, S.S.;
IJMME,2011, 6,300.
21.Gorash, Y.; Comlekci, T.; MacKenzie, D.; Procedia
Engineering,2015, 133,420.