Document Type : Review Article
Authors
- Vladimir G. Krishtop 1, 2
- Dmitry A. Zhevnenko 2, 3, 4
- Evgeny G. Gornev 3, 4
- Sergey S. Vergeles 3, 5
- Alexander S. Bugaev 3
- Vladimir G. Popov 1
- Pavel V. Dudkin 2, 3
- Sergey V. Kohanovsky 2
- Tatyana V. Krishtop 2
1 institute of Microelectronics Technology and High Purity Materials RAS, Chernogolovka, 142432, Russia
2 Seismotronics LLC, Moscow, 127204, Russia
3 Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141700, Russia
4 JCS Molecular Electronics Research Institute, Zelenograd, 124460, Russia
5 Landau Institute for Theoretical Physics RAS, Chernogolovka, 142432, Russia
Abstract
In this paper, we consider technology and application of electrochemical transducers (ECT). Electrochemical systems are very promising for the development of a new element base for microelectronics. One of the most important directions is the design of micro-sized electrochemical acceleration and pressure sensors, and one of the most promising technologies is electrochemical transfer. Electrochemical transducers are very sensitive and energy-efficient and best suited for measuring weak mechanical movements. The basic principle consist in the following: microelectrodes are formed on a silicon chip and the chip is placed in a container with liquid electrolyte. Under the influence of an external mechanical signal, the electrolyte liquid starts moving (by inertia or by pressure) and transfers ions between the electrodes. The generated electric current is proportional to the external mechanical signal. We have developed a new microelectronic technology for electrochemical transducers, and have designed new instruments based on new electrochemical microelectronic chips. Currently, ECTs are applied for a variety of engineering tasks. ECTs are used to record the ground oscillation in the railway, in the tsunami early warning system, in electrochemical hydrophones for sea-bottom stations and for geoexploration systems, in the precise azimuth determination inertial systems. Copyright © VBRI Press.
Keywords
2. Grafov B.M. (Ed.) Electrochemical converters of primary
information;Moscow: Mechanical Engineering, 1969.
3. Lidorenko N. S. et al.(Eds.);Introduction to Molecular
Electronics, Énergoatomizdat, Moscow, 1985.
4. Newman, J.; Thomas-Alyea, K.E.; Electrochemical Systems,
3rd Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004.
5. Larkam,C. W.;J. Acoust. Soc. Am.,1965, 37, 4, 664.
6. A. Wittenborn, J. Acoust. Soc. Am.,1958, 30, 683.
Wittenborn, A. F.; J. Acoust. Soc Am.,1959, 31, 474.
7. Reed, H. B.; Hurd, R. H.; Solion: Principles of Electrochemistry
and Low-power Electrochemical Devices: U.S. Naval Ordnance
Laboratory, Technical Information Office, Silver Spring, Md.,
1958.
8. Hurd, R.M.; Jordan, W.H.; Platin. Met. Rev.,1960, 4, 2, 42.
https://www.technology.matthey.com/pdf/pmr-v4-i2-042-047.pdf
9. Collins, J. L.; Richie, W. C.; English, G. E.; J. Acoust. Soc.Am.,
1964, 36, 1283.
10. Hurd,R. M.; Lane, R. N.; J. Electrochem. Soc.,1957, 104, 727.
11. Kozlov, V.A.; Achievements of Modern Radioelectronics,2004,
5-6.
12.Bugaev, A.S.;et al.;J. Commun. Technol. Electron.,
(Radiotekhnika i Elektronika), 2018,63, 12, 1339.
13.Agafonov, V.M.;Neeshpapa, A.V.; Shabalina,A.S.;
Electrochemical Seismometers of Linear and Angular Motion.
Encyclopedia of Earthquake Engineering, Springer-Verlag
Berlin Heidelberg,2015
Lithosphere (PASSCAL). N.Y.: IRIS,2008.
https://www.iris.edu/hq/files/publications/passcal_review.pdf
15. Templeton,M. E.;IRIS Library of Nominal Response for
Seismic Instruments. Washinghton: IRIS, 2017.
16.Shabalina,A.S.; Krishtop, V.G.;Proc. SPIE,ICMNE-2016,
2016, 10224,102241K.
17.Levchenko, D.G.;Kuzin, I.P.;Safonov, M.V.; Sychikov,V.N.;
Ulomov, I.V.; Kholopov, B.V.; Seismic Instruments,2010, 46, 3,
250.
18. Akris,J.M.;Pаpoulia,J.;Sambas,A.T.;Boll. Geofis. Teor.
Appl.,2014,55,561.
19. Papoulia,J.;Makris,J.;Ilinski,D.;et al.;Proc. 9 th Hellenic
Symp. of Oceanography and Fisherie.Athens: Hellenic Center
for Marine Research, 2009,1,21.
20. Papoulia,J.;Nicolich,R.;Makris,J.;et al.;Boll. Geofis. Teor.
Appl.,2014,55,405.
21. Bugaev, A.S.; Agafonov, V.M.; Krishtop, V.G.; Antonov, A.N.;
Veretin, V.S.; Oil & Gas Field Engineering,2013, 46.
22. Agafonov,V.M.;Krishtop,V.G.;Egorov,I.V.;Devices and
Systems of Exploration Geophysics,2013,43,39.
23. Zaitsev, D.L.; Agafonov, V.M.; Egorov, E.V.; Antonov,A.N.;
Krishtop, V.G.; J. Sens., 2016, Article ID 6148019
24. Zaitsev, D.;Antonov,A.; Krishtop, V.; Proc. SPIE, ICMNE-
2016, 2016,10224, 102241H.25. Zaitsev, D. L.;Panteleev, A.M.;Gyroscopy and Navigation,
2009,65, 103.
26. Kapustian, N.; Antonovskaya, G.; Agafonov, V.; Neumoin, K.;
Safonov, M.; Seismic Behavior of Irregular and Complex
Structures.In Geotechnical, geological and Earthquake
Engineering;O. Lavan, M.DeStefano(Eds.);Springer. XIV.
2013, 353.
27. Kapustyan, N.K.; Antonovskaya, G.N.; Klimov, A.N.; Housing
Construction,2013,11, 6.
28. Agafonov, V. M.; Afanasiev, K. A.; Yashkin, A. B.; Proc. of
MIPT.2013, 5,142.
29. Kozlov,V.A.;Agafonov,V. M.;Dudkin,P.V.;Abstracts of Int.
Conf.“System Problem of Reliability, Quality, Information and
Electronic Technologies”, Moscow: Radio and Communication,
2005, 142.
30. Kozlov, V.A.; Terent'ev, D.A.;Russ. J. Electrochem., 2003,39,
4,401.
31. Kozlov, V.A.; Terent'ev, D.A.;Russ. J. Electrochem., 2002, 38,
9,992.
32.Kozlov, V.A.;Safonov, M.V.;Russ. J. Electrochem.,2004, 40,
460.
33. Kozlov, V.A.; Korshak, A.S.; Pet’kin, N.V.; Russ. J.
Electrochem.,1991, 27, 1, 20.
34. Babanin, A.V.; Kozlov, V.А.; Pet’kinN.V.; Russ. J.
Electrochem.,1990, 26, 5, 601.
35. Zakharov, I.S.; Kozlov, V.A.; Russ. J. Electrochem., 2003, 39,
4,397.
36.Zakharov, I.S.;Russ. J. Electrochem., 2004,40, 6, 626.
37. Safonov, M.V.;Electronic Journal “Investigated in Russia”.
2004, 7,2433.
38. Chen, D.; Li, G; Wang, J.; Chen, J.; He, W.;Fan,Y.; Deng, T.;
WangP.; Sens. Actuators, A, 2013, 202,85.
39. Deng, T.; Chen,D.; Chen, J.; Sun, Z.; Li, G.; Wang,J.; IEEE
Sens.J.,2016,16, 3, 650.
40. Sun,Z.;Li,G.;Chen,L.;Chen,D.;Wang,J.;Chen,J.;IEEE
Trans.Electron Devices,2017,64,3829.
41. Deng, T.; Sun, Z.; Li, G.; Chen, J.; Chen,D.; Wang,J.;
J. Micromech. Microeng., 2017, 27, 025004.
42. Zhou,Q.;Wang,C.;Chen,Y.;Chen,S.;Lin,J.;Sensors. 2016,
16,657.
43. Shabalina, A.S.;Zaitsev,D.L.;Egorov,E.V.;Egorov,I.V.;
Antonov,A.N.;Bugaev,A.S.;Agafonov,V.M.;Krishtop,V.G.;
Achievements of Modern Radioelectronics, 2014, 9,33.
44. Fu,M.;Cheng,S.;Wang,M.;Ming,L.;Wang,T.;Sens.
Actuators, A, 2017,257,145.
45. Cheng,S.;Fu,M.;Wang,M.;Ming,L.;Fu,H.;Wang,T.;
Sensors,2017,17, 416.
46. Cheng,S.;Wang,M.;Li,X.;Xiao,M.;Fu,M.;Wang,T.;IEEE
Sens.J.,2017,17,267.
47. Agafonov, V.M.; Krishtop, V.G.; Safonov, M.V.; Nano-
Mikrosist. Tekh., 2010, 40-45.
48.Krishtop,V.G.; Agafonov,V.M.;Bugaev,A.S.;Russ.
J.Electrochem., 2012, 48, 746.
49. Novikov,A.V.;Egorchikov,A.E.;Dolgov, A.N.;Gornev, E.S.;
Popov, V.G.;Egorov, I.V.; Krishtop,V. G.;Proc. SPIE.
ICMNE-2016, 2016,10224,102241J.
50.Zhevnenko,D.A.;Vergeles,S.S.;Krishtop,T.V.;
Tereshonok,D.V.; Gornev, E.S.; Krishtop, V.G.; Proc. SPIE.
ICMNE-2016,2016,10224,102241I.
51.Zhevnenko,D.A.; Gornev,E.S.; Vergeles,S.S.; Krishtop,T.V.;
Tereshonok,D.V.; Krishtop,V.G.;Electronic Engineering.,
Series 3. Microelectronics,2016, 164, 31.