Document Type : Research Article

Authors

Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India

Abstract

Au nanoparticles onto a silica-glass (SiO2) surface have been formed due to thermal dewetting of Au thin films. Subsequently, high energy Si ion-irradiations on the pristine Au nanoparticles result systematic redshifts of optical responses and concomitant broadening of the optical absorption peaks with the increase of ion doses. Essentially, these phenomena have been explained in the light of ion-beam mixing and transient molten-state diffusion process of Au atoms in the underneath SiO2 substrate. Analysis of high resolution electron microscopy and Rutherford backscattering data have corroborated the ion-beam induced mixing of Au atoms with the silica glass. Copyright © 2017 VBRI Press.

Keywords

1.Jeon, T.Y.;Kim, D. J.; Park, S.; Kim,S.; and Kim, D.; Nano
Convergence
, 2016, 3, 18.
DOI
:10.1186/s40580-016-0078-6
2.
Petrov, M. I.; Sukhov, S. V.; Bogdanov, A. A.; Shalin, A. S;
Dogariu, A.;
Laser Photonics Rev.,2016, 10, 116.
DOI
:10.1002/lpor.201500173
3.
Lumdee, C.; Yun, B., Kik, P. G.; ACS Photonics, 2014, 1, 1224.
DOI
: 10.1021/ph500304v
4.
Olson, A. P.; Ertsgaard, C. T.; Elliott, S. N.; Lindquist, N. C.; ACS
Photonics
, 2016, 3, 329.
DOI
: 10.1021/acsphotonics.5b00647
5.
Ouyang, Z.; Zhao, X.; Varlamov, S.; Tao, Y.; Wong, J.; Pillai, S.;
Prog.
Photovolt: Res. Appl., 2011, 19, 917.
DOI
: 10.1002/pip.1135
6.
Muskens, O. L.; Bergamini, L.; Wang, Y.; Gaskell, J. M.; Zabala,
N.; de Groot, C.; Sheel, D. W.; Aizpurua, J.;
Light: Sci. Appl.,
2016,
5, e16173
DOI
: 10.1038/lsa.2016.173
7.
Sharma, B.; Cardinal, M. F.; Kleinman, S. L.; Greeneltch, N. G.;
Frontiera, R. R.; Blaber, M. G.; Schatz, G. C.; Duyne R. P. V.;

MRS Bull.
, 2013,38, 615.
DOI
: 10.1557/mrs.2013.161
8.
Wang, A. X.; Kong, Xianming K.; Materials,2015, 8, 3024.
DOI
: 10.3390/ma8063024
9.
Kreibig, U.; and Vollmer, M.;Optical Properties of Metal Clusters,
Springer, Berlin,
1995.
DOI
: 10.1007/978-3-662-09109-8
10.
Jain, I. P.; Agarawal, G.; Surf. Sci. Rep., 2011, 66, 77.
DOI
: 10.1016/j.surfrep.2010.11.001
11.
Srivastava, S.K.; Avasthi, D. K.; Assaman, W.; Wang, Z. G.;
Kucal, H.; Jacquet, E.;
Carstanjen, H.D.; and Toulemonde, M.;
Phys. Rev. B,
2005, 71, 193405.
DOI
: 10.1103/PhysRevB.71.193405
12.
Gangopadhyay, P.; Srivastava, S. K.; Magudapathy, P.; Sairam,
T.N.
; Nair, K.G.M.; and Panigrahi, B.K.; Vacuum, 2010, 84,
1411.

DOI
: 10.1016/j.vacuum.2010.01.013
13.
Schneider, C.A.; Rasband, W.S.; and Eliceiri, K.W.; Nat. Methods,
2012,
9, 676.
DOI
: 10.1038/nmeth.2019
14.
Mullins, W. W.; J Appl. Phys., 1957, 28, 333.
DOI
: 10.1063/1.1722742
15.
Shaffir, E.; Riess, I.; and Kaplan, W. D.; Acta Mater., 2009,57,
248.

DOI
: 10.1016/j.actamat.2008.09.004

16.
Huang, X.; El-Sayed, M. A.; J. Adv. Res.,2010, 1, 13.
DOI
: 10.1016/j.jare.2010.02.002
17.
Bolse, W.; Schattat, B. ; Nucl. Instrum. Methods Phys. Res., Sect.
B,
2003, 209, 32.
DOI
: 10.1016/S0168-583X(02)02039-6
18.
Noguez, C.; J. Phys. Chem. C, 2007, 111, 3806.
DOI
:10.1021/jp066539m
19.
Kreibig, U.; and Fragstein, C. V.; Z. Phys., 1969, 224, 307.
DOI
: 10.1007/BF01393059
20.
Kreibig, U.; Z. Phys., 1970, 234, 307.
DOI
: 10.1007/BF01394718
21.
Ashcroft, N.W.; and Mermin, N.D.; Solid State Physics,
Philadelphia, Pennsylvania: Saunders College,
1976.
DOI
: 10.1002/piuz.19780090109
22.
Mitchell, J. W.; and Goodrich, R. G.; Phys. Rev. B, 1985, 32, 4969.
DOI
: 10.1103/PhysRevB.32.4969
23.
Sancho-Parramon, J.;Nanotechnology, 2009,20, 235706.
DOI
: 10.1088/0957-4484/20/23/235706
24.
King, S. R.; Massicot, J.; McDonagh, A. M.; Metals, 2015, 5,
1454.

DOI
: 10.3390/met5031454
25.
Mayer, M.; Nucl. Instrum. Methods Phys. Res., Sect. B, 2014, 332,
176.

DOI
: 10.1016/j.nimb.2014.02.056