Document Type : Research Article

Authors

Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India

Abstract

π-conjugated organic materials such as carbazoles have attracted much attention because of their applications in electronic devices such as OLED’s, solar cells and sensors. Due to their optoelectronic properties, high charge carrier mobility, suitable band gaps and orbital energies, carbazoles have received immense attention to serve as a potent photosensitizer for obtaining high performance in DSSC. The present QSPR study of substituted carbazole and carbazole anion with electron donor (NH2) and acceptor (NO2) substituents at various positions is done by the density functional theory (DFT) calculations at B3LYP/6-31G(d,p) level. The longest maximum absorption wavelengths (λmax) in vacuum as well as in polar (acetonitrile) and non-polar (benzene) solvents are studied by using the time-dependent density functional theory (TD-DFT).  For the singly substitution of NH2 (at C3) and NO2 (at C4) groups to the carbazole and its anion, the λmax values are observed to be shifted to the longest wavelength from 290.56 nm to 325.73 and 375.77 nm than the other respective positions.  Whereas, the respective λmax values for carbazole-anion are found at 384.28 and 590.53 nm respectively.  For disubstituted carbazole with NH2 and NO2 at C3 and C4 positions, the longest λmax shifts to 477.15 nm and for carbazole-anion the longest λmax obtained at C4 (NH2) and C5 (NO2) positions with λmax value 694.61 nm. Similar observations are also found in acetonitrile and benzene solvents. Further, it is observed that as the λmax increases, the HOMO-LUMO energy gap (EHL) value decreases accordingly which can be attributed to intramolecular charge transfer from NH2 to NO2 groups. A very good correlation of λmaxwith EHL is observed with correlation coefficient between 0.91 to 0.95 in vacuum as well as in acetonitrile and benzene solvents. Present study may provide valuable guidelines for the choice of suitable substituent to design carbazole moieties as efficient photosensitizer in DSSC. Copyright © 2017 VBRI Press.

Keywords

1.Müllen, K.; Wegner G. (Eds.) Electronic Materials: The
oligomers Approach Wiley-VCH, Weinheim, New York,
1998.

2.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F.
Science 1992,258, 1474.

DOI: 10.1126/science.258.5087.1474

3.Manoj, A. G; Narayan, K. S. Opt. Mater.2002, 21,417.

DOI:10.1016/S0925-3467(02)00172-6

4.McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem., Rev.
2000, 100, 2537.

DOI:10.1021/cr9801014

5.Sworakowski, J. and Ulanski, J. Annu. Rep.Prog.Chem., Sect.
C: Phys. Chem. 2003,99, 87.

DOI:10.1039/B208498H

6.Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks,
R. N.; Mackay, K.; Friend, R. H.; Burn, P. L. and Holmes, A.
B. Nature 1990, 347, 539.

DOI: 10.1038/347539a0

7.Knolker, H. J. and Reddy, K. R. Chem. Rev. 2002,102, 4303.

DOI:10.1021/cr020059j

8.Adad, A.; Hmammouchi, R.; Lakhlifi, T. and Bouachrine, M.
J. Chem. Pharm. Res. 2013, 5, 26.

9.D’Angelo, P.; Barra, M.; Cassinese, A.; Maglione, M. G.;
Vacca, P.; Minarini, C.; Rubino, A. Solid-State
Electron2007, 51, 123..

DOI:10.1016/j.sse.2006.11.008

10.Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J. F.; Leclerc M.
Macromolecules2002, 35, 2122.

DOI:10.1021/ma011311c

11.Jiaoli, L.; Grimsdale, A. Chem. Soc. Rev. 2010,39, 2399.

DOI:10.1039/B915995A

12.Qian, X.; Zhu, Z. Y.; Chang, W. Y.; Song, J.; Pan, B.; Lu, L.;
Gao, H. H. and Zheng, J. Y. ACS Appl. Mater. Interfaces
2015, 7, 9015.

DOI:10.1021/am508400a

13.Gharanjig, K. and Hosseinnezhad, M. Pigm. ResinTechnol.
2015, 44, 292.

DOI:10.1108/PRT-09-2014-0077

14.Beni, A. S.; Zarandi, M.; Madram, A. R.; Bayat, Y.;
Chermahini, A. N. and Ghahary, R. Mol. Cryst. Liq.Cryst.
2016, 629, 29.

DOI:10.1080/15421406.2015.1106895

15.Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.;
Vlachopopulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, and
Sun, L. Adv. Mater. 2014, 26, 6629.

DOI: 10.1002/adma.201402415

16.Keawin, T.; Sooksai, C.; Prachumrak, N.; Kaewpuang, T.;
Muenmart, D.; Namuangruk, S.; Jungsuttiwong, S.;
Sudyoadsuk, T. and PromarakRSC Adv. 2015, 5, 16422.

DOI: 10.1039/C4RA16458J

17.Sherbiny, D. A.; Cheema, H.; Essawy, F. E.; Abdel, M.and
El-Shafei, A. Dyes Pigm.2015, 115, 81.

DOI: 10.1016/j.dyepig.2014.12.009

18.El-Shafei, A.; Hussain, M.; Atiq, A.; Islam, A. and
Han, L.
J. Mater. Chem
. 2012, 22, 24048.
DOI: 10.1039/c2jm35267b

19.Gupta, K. S. V.; Suresh, T.; Singh, S. P.; Islam, A andHan, L.
Org. Electron.2014, 15, 266.

DOI: 10.1016/j.orgel.2013.11.020

20.Duvva, N.; Kanaparthi, R. K.; Kandhadi, J.; Marotta, G.;
Salvatori, P.; Angelis, F. D. and Giribabu, L. J. Chem. Sci.
2015, 127, 383.

DOI: 10.1007/s12039-015-0794-1

21.Venkateswararao, A.; Thomas, J. K. R.; Lee, C. P.; Li, C. T.
and Ho, K. C. ACS Appl. Mater. Interfaces 2014,6, 2528.

DOI: 10.1021/am404948w

22.Jr, F. C. F. and Padama, A. A. B. Polymer2016, 97,55.

DOI: 10.1016/j.polymer.2016.05.025

23.Garnier, F.; Horowitz, G.; Peng, X.; Fichou, D. Adv.Mater.
1990, 2, 592.

DOI: 10.1002/adma.19900021207

24.Hlel, A.; Mabrouk, A.; Chemek, M.; Khalifa, I. B. andAlimi
K. Computational Condensed Matter2015, 3, 30.

DOI: 10.1016/j.cocom.2015.02.001

25.Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc,M.
Adv. Funct. Mater. 2006, 16, 1694.

DOI: 10.1002/adfm.200600171

26.Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007,19,
2295.

DOI: 10.1002/adma.200602496

27.Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair,E.;
Neagu-Plesu R.; Belletête, M.; Durocher, G.; Tao, Y.;
Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732.

DOI:10.1021/ja0771989

28.Zou, Y.; Gendron, D.; Badrou-Aïch, R.; Najar,i A.; Tao, Y.;
Leclerc, M. Macromolecules 2009, 42, 2891.

DOI:10.1021/ma900364c

29.Gajda, K.; Zarychta, B.; Kopka, K.; Daszkiewicz, Z.
AndEjsmont K. Acta Cryst.
C 2014, 70, 987.
DOI: 10.1107/S2053229614020634

30.Brunner, K.; Dijken, A. V.; Börner, H.; Bastiaansen, J. A.

M.; Kiggen N. N.M.; Langeveld, B. M. W.
J. Am. Chem.
Soc. 2004, 126, 6035.

DOI:10.1021/ja049883a

31.Roncali, J. Chem. Rev.1997, 97, 173.

DOI:10.1021/cr950257t

32.Mullekom, H. V.; Vekemans, J.; Havinga, E.; Meijer, E. W.

Mater. Sci. Eng. R. 2001, 32,1.

DOI
:10.1016/S0927-796X(00)00029-2
33.Ajayaghosh, A.; Chem. Soc. Rev.2003, 32,181.

DOI:10.1039/B204251G

34.Thompson, B. C.; Madrigal, L.G.; Pinto, M. R.; Kang, T. S.;

Schanze, K. S.; Reynolds, J. R. J. Polym. Sci., Part A:Polym.

Chem.2005, 43, 1417.

DOI: 10.1002/pola.20578

35.Kulkarni, A. P.; Zhu, Y.; Jenekhe, S.A. Macromolecules

2005, 38, 1553.

DOI:10.1021/ma048118d

36.Babel, A.; Wind, J. D.; Jenekhe, S. A. Adv. Funct. Mater.

2004, 14, 891.

DOI: 10.1002/adfm.20030518

37.Champion, R. D.; Cheng, K. F.; Pai, C.L.;Chen, W. C.;
Jenekhe, S. A. Macromol. Rapid Comm. 2005, 26, 1835.

DOI: 10.1002/marc.200500616

38.Malki, Z. E.; Hamidi, M.; Lére-Porte, J. P.; Serein-Spirau,F.;
Bejjit, L.; Haddad, M. and Bouachrine, M. Adv. Mat.Lett.
2012, 3, 266.

DOI: 10.5185/amlett.2011.8292

39.Ware, A. P.; Pingale, S. S. Adv. Sci. Lett. 2015, 21, 2921.

DOI:
10.1166/asl.2015.6372
40.Wu, T. Y.; Tsao, M. H.; Chen, F. L.; Su, S. G.; Chang,
C. W.; Wang, H. P.; Lin, Y. C.; Ou-Yang, W. C. and Sun, I.
W. Int. J. Mol. Sci. 2010, 11, 329.

DOI: 10.3390/ijms11010329

41.Lia, J. and Grimsdale, A. J. Mater. Environ. Sci. 2014,5,
532.

42.Jacquemin, D.; Preat, J.; Wathelet, V. and Perp`ete, E. Chem.
Phys.2006, 328, 324.

DOI: 10.1016/j.chemphys.2006.07.037

43.Perp`ete, E. A.; Lambert, C.; Wathlet, V.; Preat, J. and
Jacquemin, D. Spectrochim. Acta. Mol.Biomol.Spectrosc.
2007, 68, 1326

DOI:10.1016/j.saa.2007.02.012

44.Baerends, E. J.; Gritsenko, O. V. and Meer, R van Phys.
Chem. Chem. Phys. 2013, 15, 16408.

DOI: 10.1039/C3CP52547C

45.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;Baron, V.;
Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;
Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng,
G.; Sonnenberg, J. L.; Hada, M. M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; Montgomery, Jr J. A.; Peralta, J.
E.; Ogliaro, F.; Bearpark, M. J. J.; Heyd, E.;Brothers K. N.
Kudin, V. N.; Staroverov, R.; Kobayashi, J.; Normand,K.;
Raghavachari, A.; Rendell, J. C.; Burant, S. S.;Iyengar, J.;
Tomasi, M.; Cossi, N.; Rega, J.M.;Millam, M.; Klene, J. E.;
Knox, J. B.; Cross, V.; Bakken, C.; Adamo, J.; Jaramillo, R.;
Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.;
Cammi, C.; Pomelli, J. W.; Ochterski, R. L.; Martin, K.;
Morokuma, V. G.; Zakrzewski, G. A.; Voth, P.; Salvador, J.
J. Dannenberg, S.; Dapprich, A. D.; Daniels,O.; Farkas, J. B.;
Foresman J. V.; Ortiz, J.; Cioslowski and D. J. Fox,
Gaussian09, Revision A.1, Gaussian, Inc., Wallingford C T,
2009.

46.Barone, V.; Cossi, M. J. Phys. Chem. A1998, 102, 1995.

DOI: 10.1021/jp9716997

47.Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comp.
Chem. 2003, 24, 669.

DOI: 10.1002/jcc.10189

48.UNIVIS-2000, Limaye, A. C. and Gadre, S. R. Curr. Sci.
2000, 80, 1296.

49.Boo, B. H.; Ryu, S. Y.; Kang, H. S.; Koh, S. G. and Park, C.
J. J. Korean Phys. Soc.2010, 57, 406.

DOI: 10.3938/jkps.57.406