Document Type : Research Article
Authors
1 Materials Chemistry Lab, Department of Chemistry, Muthurangam Government Arts College, Vellore632002, India
2 Department of Polymer Science, University of Madras, Chennai600025, India
Abstract
Electrochemical deposition (ECD) of FeS2 thin films from aqueous solution contains FeSO4, Na2S2O3.5H2O and H2SO4. ECDs were performed at different bath temperatures (30, 40, 50, 60 and 70°C) with constant pH (~2). FESEM images shows that the grains are as deposited films with stoichiometric iron pyrite thin films were successfully formed at 50, 60 and 70°C and S/Fe ratio in as-deposited films were ~2. GAXRD studies of as-deposited at 30 and 40°C FeS2 thin films shows a minor phase of orthorhombic marcasite and major cubic pyrite phase observed. As-deposited thin films at 50, 60 and 70°C brings about the formation of FeS2 with single crystalline cubic phases with a strong (111) preferred orientation and without any contribution of marcasite phase. When the bath temperature was increased, as-deposited thin films of crystalline size, thickness and roughness value increased due to rate of formation FeS2 increased. Raman spectra of the FeS2 thin films presented characteristic peaks of S-S active mode at 377 cm-1. The optical spectra of the as-deposited FeS2 thin films with different bath temperatures showed a clear absorption edge band gap of these films from 0.86 to 0.96 eV. As-deposited FeS2 thin films at different bath temperatures show p-type conductivity. Copyright © 2017 VBRI Press.
Keywords
Büker, K.; Bronold, M.; Höpfner, C.; Tributsch, H.; Sol. Energy
Mater. Sol. Cells, 1993, 29, 289.
DOI: 10.1016/0927-0248(93)90095-K
2.Ares, J.R.; Pascual, A.; Ferrer, I.J.; Sánchez, C.; Thin Solid Films,
2005, 480–481, 477.
DOI:10.1016/j.tsf.2004.11.064
3.Sun, R.; Chan, M.; Ceder. G.; Phys. Rev. B: Condens. Matter
Mater. Phys.,2011, 83, 235311
DOI:10.1088/0953-8984/25/46/465801
4.Ferrer, I.J.; Sanchez, C.; J. Appl. Phys., 1991, 70, 2641.
DOI:org/10.1063/1.349377
5.Soukup, R. J.; Prabukanthan, P.; Ianno, N. J.; Sarkar, A.; Kamler,
C. A.; Sekora, D. G.; J. Vac. Sci. Technol., 2011, A 29, 011001.
DOI:10.1116/1.3517739
6.Smestad, G.; Ennaoui, A.; Fiechter, S.; Tributsch, H.; Hofmann,
W.K.; Birkholz, M.; Sol. Energy Mater., 1990, 20, 149.
DOI: 10.1016/0165-1633(90)90001-H
7.Yuan, B.; Luan, W.; Tu, S.T.; Mater. Lett.,2015, 142, 160.
DOI:10.1016/j.matlet.2014.12.003
8.Gomes, A.; Mendonc ̧aM.H.;. Da Silva Pereira, M.I.; Costa,
F.M.A.; J. Solid State Electrochem., 2000, 4, 168.
DOI:10.1007/s100080050015
9.Abass, A. K.; Ahmed, Z. A.; Tahib, R. E.; Phys. Status Solidi
a,1986,97, 243.
DOI:10.1002/pssa.2210970122
10.Smestad, G.; Da Silva, A.; Tributsch, H.; Fiechter, S.; Kunst, M.;
Meziani, N.; Birkholz, M.; Sol. Energy Mater., 1989, 18, 299.
DOI: 10.1016/0165-1633(89)90044-0
11.Yamamoto, A.; Nakamura, M.; Seki, A.; Li, E. L.; Hashimoto, A.;
Nakamura, S; Sol. Energy Mater. Solar Cells, 2003, 75, 451.
DOI: 10.1016/S0927-0248(02)00205-2
12.Ouertani, B.; Ouerfelli, J.; Saadoun, M.; Bessais, B.; Ezzaouia, H.;
Bernede, J. C.; Mater. Charact., 2005, 54, 431.
DOI:10.1016/j.matchar.2005.01.009
13.Yang, K.; Kawai, S.; Ichimura, M.; Thin Solid Films, 2014, 573, 1.
DOI: 10.1016/j.tsf.2014.10.072
14.Dong, Y.; Zheng, Y.; Duan, H.; Sun, Y.; Chen, Y.; Mater. Lett.,
2005, 59, 2398.
DOI: 10.1016/j.matlet.2005.03.025
15.Gomes, A.; Ares, J.; Ferrer, I.; Da Silva Pereira, M.; Sanchez, C.;
Mater. Res. Bull., 2003, 38, 1123.
DOI: 10.1016/S0025-5408(03)00116-8
16.Nakamura, S.; Yamamoto, A.; Sol. Energy Mater. Sol. Cells, 2001,
65, 79.
DOI: 10.1016/S0927-0248(00)00080-5
17.Chatzitheodorou, G.; Fiechter, S.; Kunst, M.; Luck, J.; Tributsch,
H.; Mater. Res. Bull., 1988, 23, 1261.
DOI:10.1016/0025-5408(88)90114-6
18.Prabukanthan, P.; Soukup, R. J.; Ianno, N. J.; Sarkar, A.; Kment,
S.; Kmentova, H.; Kamler, C. A.; Exstrom, C. L.; Olejnicek, J.;
Darveau, S. A.; Proceedings of the 35th Photovoltaics Specialists
Conference, Honolulu, HI, United States, June 20-25, 2010,
Institute of Electrical and Electronics Engineers: Washington, DC,
2010; p 2965.
DOI:10.1109/PVSC.2010.5614465
19.Duan, H.; Zheng, Y. F.; Dong, Y. Z.; Zhang, X. G.; Sun, Y. F.;
Mater. Res. Bull., 2004, 39, 1861.
DOI: 10.1016/j.materresbull.2004.06.012
20.Huang, L.; Wang, F.; Luan, Z.; Meng, L.; Mater. Lett., 2010, 64,
2612.
DOI: 10.1016/j.matlet.2010.08.070
21.Wang, F.; Huang, L.; Luan, Z.; Huang, J.; Meng, L.; Mater. Chem.
Phys., 2012, 132, 505.
DOI:10.1016/j.matchemphys.2011.11.061
22.Zhu, L.; Richardson, B.; Tanumihardja, J.; Yu, Q.; Cryst. Eng.
Comm, 2012, 14, 4188.
DOI:10.1039/C2CE25222H
23.Kirkeminde,K.; Scott, R.; Ren,S.; Nanoscale, 2012, 4, 7649.
DOI:10.1039/c2nr32097e
24.Vaughan, D.J.; Craig, J.R.; MireralChemistry of Metal Sulfides,
Cambridge University Press, Cambridge, U.K. 1978
25.Ferrer, I.J.; Sanchez, C.; Solid State Commun.1992, 81, 317
DOI:10.1016/0038-1098(92)90759-3
26.Schroder, D.K.; Semiconductor Material and Device
Characterization, Chapter 1.10, 30thEdition, John Wiley & Sons,
New Jersey 2006.