Document Type : Research Article
Authors
Department of Physics, Advanced Materials Research Laboratory, Yogi Vemana University, Kadapa,Andhra Pradesh 516003, India
Abstract
Tin mono-sulfide thin films were prepared using a two-step process consisting of DC sputtered deposition of Sn precursors over glass substrate held at 150 oC, followed by sulfurization for 1 hour at different temperatures ranging from 250 oC to
400 oC. The influence of the sulfurization temperature on resultant films was studied in terms of its structure, morphology and opto-electronic properties. X-ray diffraction study revealed that the films sulfurized at lower temperature (~250 oC) had prominent SnS2 phase in addition to SnS. A single-phase tin mono-sulfide planes corresponding to orthorhombic structure has been observed at 300 oC and found to be highly crystalline at 350 oC. Further, three distinct Raman modes observed at 95, 190 and 218 cm-1 for Sn precursors sulfurized at 350 oC, strongly supporting the formation of single phase SnS. The optimized SnS film showed a direct band gap of 1.35 eV with an absorption coefficient of 5 x 104 cm-1. The valence states of Sn (+2) and S (-2) determined from X-ray photoelectron spectroscopy analysis for Sn precursors sulfurized at 350 oC, indicating the existence of SnS. These films had stoichiometric atomic ratio of Sn/S ~ 1 with surface roughness of 20 nm. All the films have shown p-type conductivity and the Sn precursors sulfurized at 350 oC exhibited relatively high conductivity of 0.947 x 10-2 (Ω cm)-1. The optoelectronic properties of SnS films reported in the present work would be highly suitable for device fabrication and promising as an alternative absorber for thin film solar cells. Copyright © 2017 VBRI Press.
Keywords
M.J.;Datta, P.K.; Mater. Lett.,1998, 37, 57.
DOI:10.1016/S0167-577X(98)00066-4
2.Miles, R.W.; Ramakrishna Reddy, K.T.; Forbers, I.; J.Crystal
Growth,1999, 316, 198.
DOI:10.1016/S0022-0248(98)01036-7
3.Kask, E.; Raadik, T.; Grossberg, M.; Josepson, R.;Krustok, J.;
Energy Proc.,2011, 10, 261.
DOI:10.1016/j.egypro.2011.10.188
4.Adam, W.W.; Baranowski, L.L.; Zawadzki1, P.; DeHart, D.;
Johnston, S.; Stephan, S.; Wolden, C. A.; Zakutayev, A.; Prog.
Photovolt: Res. Appl.2016, 24,929.
DOI:10.1002/pip.2735
5.Koteeswara Reddy, N.; Devika, M.; Gopal, E.S.R.; Critical
reviews in solid state and materials science, 2015, 0:1-40.
DOI: 10.1080/10408436.2015.1053601
6.Jesse, T.R.D.; walsh, A.; Pooja, M.P.; Laurie, M. P.; Colombara,
D.; Saiful Islam, M.; Phys. Chem. Chem. Phys., 2012,14, 722.
DOI: 10.1039/c2cp40916j
7.Patel, T.H.;, J. Open Surf. Sci., 2012, 4, 6.
DOI:10.2174/1876531901204010006
8.Ramakrishna Reddy, K.T.; Koteswara Reddy, N.; Miles, R.W.;
Sol. Energy Mater. Sol. Cells, 2006, 90,304.
DOI:10.1016/j.solmat.2006.06.012
9.Ham, G.;Shin, S.;Park, J.;Choi, H.;Kim, J.;Lee, Y.A.;Seo, H.;Jeon,
H.; Appl. Mater. Interfaces, 2013, 5, 8889.
DOI:10.1021/am401127s
10.Parentean, M.; Carbone, C.; Phys. Rev. B, 1990, 41, 5227.
DOI:10.1103/PhysRevB.41.5227
11.Nair, M.T.S.; Nair, P.K.; Semicond. Sci. Technol., 1991, 6, 132.
DOI: 10.1088/0268-1242/6/2/014
12.Ichimura, M.; Takeuchi, K.; Ono, Y.; Arai, E.; Thin Solid Films,
2000, 361, 98.
DOI:10.1016/S0040-6090(99)00798-1
13.Johnson, J.; Jones, H.; Latham, B.; Parker, J.; Engelken, R.;
Barber, C.;Semicon. Sci. Technol., 1999, 14, 501.
DOI:10.1088/0268-1242/14/6/303
14.Ghosh, B.; Bhattacharjee, R.; Banerjee, P.; Das, S.; Appl. Surf.
Sci., 2011, 257, 3670.
DOI:10.1016/j.apsusc.2010.11.103
15.Caballero, R.; Conde, V.; Leon, M.; Thin Solid Films, 2016, 612,
201.
DOI:10.1016/j.tsf.2016.06.018
16.Parkin, I.P.; Price, L.S.; Hibbert, T.G.;Molloy, K.C.; J. Mater.
Chem., 2001, 11, 1486.
DOI:10.1039/B009923F
17.Kim, J.Y.; George, S.M.; J. Phys. Chem. C, 2010, 114, 17597.
DOI:10.1021/jp9120244
18.Sinsermsuksakul, P.; Heo, J.; Noh, W.;Hock, A.S.; Gordon, R.G.;
Adv. Energy Mater, 2011, 1, 1116.
DOI: 10.1002/aenm.201100330
19.Ortiz, A.; Alonso, J.C.; Goucia, M.; Toriz, J.Semicond. Sci.
Technol., 1996, 11, 243.
DOI: 10.1088/0268-1242/11/2/017
20.Ramakrishna Reddy, K. T.; Purandhara Reddy, P.; Miles, R.W.;
Datta, P.K.; European Materials Research Society Conf.
Strasbourg, France, 2000.
DOI:10.1016/S0925-3467(01)00052-0
21.Thangarajan, B.L.; Kaliannan, P.; J.Phys. D: Appl. Phys, 2000, 33,
1054.
DOI: 10.1088/0022-3727/33/9/304
22.Jayachandran, M.; Mohan, S.; Subramanian, B.; Sanjeeviraja, C.;
Ganesan, V.; J. Mater. Sci. Lett.,2000, 20, 381.
DOI:10.1023/A:1006731013279
23.Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty,R.;
Brandt; R.E.; Poindexte, J. R.; Lee, Y.S.; Sun, L.; Polizzotti ,A.;
Park, H.H.; Gordon, R.G.; Buonassisi, T.; Adv. Mater., 2014, 26,
7488.
DOI: 10.1002/adma.201402219
24.Loferski, J.J., J. Appl. Phys.,1956, 27, 777.
DOI:10.1063/1.1722483
25.Chandrasekharan, R., Numerical Modeling of Tin Based Absorber
Devices for Cost Effective Solar Photovoltaics, the Graduate
School John and Willie Leone Family Department of Energy and
Mineral Engineering, The Pennsylvania State University, May
2012.
26.Sugiyama, M.; Murata, Y.; Shimizu, T.; Ramya, K.; Venkataiah,
C.; Sato, T.; Reddy, K. T. R.;Jpn. J. Appl. Phys., 2011, 50,
05HF03.
DOI:10.1143/JJAP.50.05FH03
27.J Nozik, A.; Coniber, G.; C Beard, M. Advanced Concepts in
Photovoltaics; Peater, L.; Frei, H.; Rinaldi, R. (Eds.); The Royal
Society of Chemistry: Cambridge UK , 2014, chapter 5 pp.122.
DOI:10.1039/9781849739955
28.Vasudeva Reddy, M.R.; Sreedevi, G.; Chinho, P.; Miles, R.W.;
Ramakrishna Reddy, K.T.;Current Applied Physics,2015, 15, 588.
DOI:10.1016/j.cap.2015.01.022
29.Lopez, S.; Ortiz, A.; Semicond. Sci. Technol., 1994, 9, 2130.
DOI: 10.1088/0268-1242/9/11/016
30.Sanchez-Juarez, A.; Ortiz, A.; J. Electrochem. Soc., 2000, 147,
3708.
DOI:10.1149/1.1393962J.
31.Lefebvre, I.; Lannoo, M.; Olivier-Fourcade, J.; Jumas, J. C.; Phys.
Rev.B, 1991, 44, 1004.
DOI:10.1103@PhysRevB.44.1004.pdf
32.JCPDS—Powder Diffraction File 39-354, Swarthmore, PA, 1991.
33.Nikolic, P. M.; Lj Milikovic, P.; Mihajlovic, B.; Lavrencic; J.
Phys. C: Solid State Phys., 1977, 10, L289.
DOI: 10.1088/0022-3719/10/11/003
34.Chandrasekhar, H.R.;Humphreys, R.G.; Zwick, U.; Cardona, M.;
Phys. Rev. B, 1977, 15, 2177.
DOI: 10.1103/PhysRevB.15.2177
35.Sohila, S.;Rajalakshmi, M.;Ghosh, C.;Arora, A.K.;
Muthamizhchelvan, C.; J. Alloys Compd., 2011, 509, 5843.
DOI:10.1016/j.jallcom.2011.02.141
36.Kawano, K.; Nakata, R.; Sumita, M.; Phys. D 1989,22, 136.
DOI: 10.1088/0022-3727/22/1/019
37.Thangaraju, B.; Kaliannan, P.; J. Phys. D: Appl. Phys.; 2000, 33,
1054.
DOI: 10.1088/0022-3727/33/9/304
38.Yanuar, F.; Guastavino, C.; Llinares, K.; Djessas, G.; Masse, J.;
Mater. Sci. Lett., 2000, 19, 2135.
DOI:10.1023/A:1026778810656
39.Moulder, J. F.; Stickle, W.F.;Sobol, P.E.;Bomben, K.D.,Handbook
of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation,
USA, 1992.
40.Briggs, D.; Peah M. (Eds.), Practical Surface Analysis, Wiley,
Chichester, 1990.
41.Ristov, M.; Sinadinovski, Gj.; Grozdanov, I.; Mitreski, M.; Thin
Solid Films, 1989, 53, 173.
DOI: 10.1016/0040-6090(89)90536-1