Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad 826004, India

2 Department of Mechanical Engineering, Institute of Engineering &Technology, GLA University, Mathura 281406, India

Abstract

Health and environmental concerns about the use of excessive conventional cutting fluids during conventional machining has led to the development of a new type of cutting fluid. Inefficient disposal of industrial cutting fluids during wet machining also reduces the use of conventional cutting fluid. Nano-material mixed cutting fluids have shown superior thermal properties and tribological properties. In the present work, different nanofluids are prepared by suspension of Titanium dioxide (TiO2), Silicon oxide (SiO2) and Aluminum oxide (Al2O3) nanoparticles in vegetable oil and water-based emulsion at room temperature in different volumetric concentrations. The viscosity and density of the developed nanofluids are measured at different temperatures for different nanoparticle volumetric concentrations. From the experimental results, it has been found that with the increase of nanoparticle concentration in base fluid, enhanced the its viscosity and density. Furthermore, addition of nanoparticles at 25 ºC enhances viscosity more compared to its addition at higher temperatures. For an increase of concentration from 0.25% to 3%, enhancement in viscosity of Al2O3, SiO2 and TiO2 nanofluids is observed as 41.6%, 43.75% and 35.55%, respectively, while for higher temperatures almost constant improvement of 25%, 24% and 30% is observed for Al2O3, SiO2 and TiO2 nanofluids, respectively. The viscosity and density of three different nanofluids are also compared. Results showed that newly prepared Al2O3 based nanofluid exhibits better properties than TiO2 and SiO2 based nanofluids. Copyright © 2017 VBRI Press.

Keywords

1.Astakhov, V. P.; Joksch, Stefan (1stEds); Metalworking Fluids
(MWFs) for Cutting and Grinding-Fundamentals and recent
advances; Woodhead: Cambridge, 2012.

DOI:10.1080/00207233.2013.779870

2.Choi, S.U.S.; ASME, FED 23, MD, 1995, 66, 99.

3.Murshed,S.M.S.;Leong, K.C.; Yang, C.; Int. J. Therm. Sci.,
2008, 47, 560.

DOI:10.1016/j.ijthermalsci.2007.05.004

4.Ettefaghi, E.; Rashidi, A.; Ahmadi, H.; Mohtasebi, S.zS.;
Pourkhalil, M.; Int. Commun. Heat Mass, 2013, 48, 178.

DOI:10.1016/j.icheatmasstransfer.2013.08.004

5.Wang, X.Q.; Majumdar, A.S.; Braz. J. Chem. Eng., 2008, 25,
631.

DOI:10.1590/S0104-66322008000400002

6.Qiang, L.; Yimin, X.; Sci. China Ser. E, 2002, 45, 408.

DOI:10.1360/02ye9047

7.Choi, S.U.S.;Zhang, Z.G.; Yu, W.;Lockwood, F.E.;Grulke, E.
A.; Appl. Phys. Lett.,2001, 79, 2252.

DOI: 10.1063/1.1408272

8.Kakac, S.; Pramuanjaroenkij, A.; Int. J. Heat Mass Tran., 2009,
52, 3187.

DOI:10.1016/j.ijheatmasstransfer.2009.02.006

9.Trisaksri, V.; Wongwises, S.; Renew. Sust. Energ. Rev.,2007, 11,
512.

DOI: 10.1016/j.rser.2005.01.010

10.Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Mussari, L.;
Pineiro, M.M.; Int. J. Heat Mass Trans., 2015, 85,54.

DOI: 10.1016/j.ijheatmasstransfer.2015.01.061

11.Lee, Ji-Hwan;Hwang, K.S.; Jang, S.P.; Lee, B.H.;Kim, J.H.;
Choi, S.U.S.;Choi, C.J.; Int. J. Heat Mass Trans., 2008, 51, 2651.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

12.Sundar, L.S.;Singh, M. K.;Ramana, E. V.;Singh, B.; Gracio, J.;
Sousa, A.C.M.; Scientific reports, Nanoparticles Mech. Engg.,
2014, 4, 1.

DOI: 10.1038/srep04039

13.Li, H.; Wang, Li; He, Yurong; Hu, Yanwei;Zhu, Jiaqi;Jiang,
Baocheng; App. Therm. Engg., 2014, 1.

DOI: 10.1016/j.applthermaleng.2014.10.071

14.Namburu, P.K.; Kulkarni, D.P.; Dandekar, A.; Das, D.K.; IET
Micro Nano Lett, 2007, 2, 67.

DOI:10.1049/mnl:20070037

15.Shoghl, S. N.; Jamali, Jalil; Moraveji, M.K.; Exp. Therm Fluid Sci,
2016, 74, 339.

16.Yu, Wei;Xie, Huaqing;Li, Yang;Chen, Lifei; Particuology, 2011,
9, 187.

DOI: 10.1016/j.partic.2010.05.014

17.Yu, Wei;Xie, Huaqing;Chen, Lifei; Li, Yang;Thermochim Acta,
2009, 491, 92.

DOI: 10.1016/j.tca.2009.03.007

18.Murshed, S.M.S.; Leong, K.C.; Yang, C.; Int. J. Therm Sci.,2008,
47, 560.

DOI:10.1016/j.ijthermalsci.2007.05.004

19.Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H.P.; Sauter, C.;
Tavman, S,Int. J. Thermophys, 2009, 30, 1213.

DOI: 10.1007/s10765-009-0594-2

20.Jeong, Jisun; Li, Chengguo;Kwon, Younghwan;Lee, Jaekeun;
Kim, S.H.; Yun, Rin; Int. J. Refrig, 2013, 36, 2233.

DOI: 10.1016/j.ijrefrig.2013.07.024

21.Phuoc, T.X.; Massoudi, Mehrdad; Chen, Ruey-Hung; Int. J.Therm.
Sci., 2011, 50, 12.

DOI:10.1016/j.ijthermalsci.2010.09.008

22.Sundar, L.S.;Ramana, E. V.;Singh, M. K.;Singh, B.; Sousa,
A.C.M.;Chem. Phys. Lett., 2012, 554, 236.

DOI:10.1016/j.cplett.2012.10.042

23.Zhou, Mingzheng; Xia, Guodong; Li, Jian; Chai, Lei; Zhou, Lijun;
Exp. therm fluid Sci., 2012,36, 22.

DOI:10.1016/j.expthermflusci.2011.07.014

24.
Sharma, A.K; Tiwari, A.K.; Dixit, A.R.; Mater. Manuf. Process,
2015
, 30, 813.
DOI:10.1080/10426914.2014.973583

25.Sharma, A.K; Tiwari, A.K.; Dixit, A.R.; Renew. Sust. Energ. Rev,
2016, 53, 779.

DOI:10.1016/j.rser.2015.09.033