Document Type : Research Article
Authors
Basic Sciences: Chemistry, NIIT University, NH-8 Jaipur/Delhi Highway, Neemrana, Rajasthan, 301705, India
Abstract
Stable, well dispersed and agglomeration free Ru metal doped TiO2 nanoparticles were produced by a sol gel method (with and without ionic liquid reaction medium). Such unique physiochemical properties of Ru-TiO2-IL catalyst were utilized as catalysts for CO2 hydrogenation reaction in task specific ionic liquid medium. Low catalysts loading, moisture/air stability, high selectivity, easy catalyst synthesis protocol as well as stress-free reaction condition along with 5 times catalysts recycling are the major outcomes of the proposed report. Copyright © 2017 VBRI Press.
Keywords
Renewable and Sustainable Energy Reviews, 2014, 38, 426.
DOI:10.1016/j.rser.2014.07.093
2.Sreenivasulu, B.; Gayatri, D. V.; Sreedhar, I.; Raghavan, K. V;
Renewable and Sustainable Energy Reviews, 2015, 41, 1324.
DOI:10.1016/j.rser.2014.09.029
3.Li, Y.; Chan, S. H.; Sun, Q; Nanoscale, 2015, 7, 8663.
DOI:10.1039/c5nr00092k
4.Najafabadi, A. T; International Journal of Energy Research,
2013, 37, 485.
DOI:10.1002/er.3021
5.Sankaranarayanan, S.; Srinivisana, K; Indian journal of
Chemistry, 2012, 51A, 1252.
6.Styring, P.; Amstron, K; Chimica Oggi-Chemistry Today, 2011,
29, 34.
7.Ola, O.; Maroto-Valera, M. M.; Mackintosh, S; Energy Procedia,
2013, 37, 6704.
DOI:10.1016/j.egypro.2013.06.603
8.Miao, C-X.; Wang, J-Q.; He, L-N; The Open Organic Chemistry
Journal, 2008, 2, 68.
DOI:10.2174/1874095200801020068
9.Aresta, M.; Dibenedetto, A; J. Braz. Chem. Soc.2014, 25, 2215.
DOI:10.5935/0103-5053.20140257
10.Von der Assen, N.; Voll, P.; Peters, M.; Bardow, A; Chem. Soc.
Rev.2014, 43, 7982.
DOI:10.1039/c3cs60373c
11.Moret, S.; Dyson, P. J.; Laurenczy, G; Nature Communications,
2014, 5, 1.
DOI:10.1038/ncomms5017
12.Ghandi, K; Green and Sustainable Chemistry, 2014, 4, 44.
DOI:10.4236/gsc.2014.41008
13.Ratti, R; Advances in Chemistry, 2014, 2014, 1.
DOI:10.1155/2014/729842
14.Duan, X.; Ma, J.; Lianc, J.; Zheng, W; Cryst. Eng. Comm.2014,
16, 2550.
DOI:10.1039/c3ce41203b
15.Hayes, R.; Warr, G. G.; Atkin, R; Chem. Rev.2015, 115, 6357.
DOI:10.1021/cr500411q
16.Richter, K.; Campbell, P. S.; Baecker, T.; Schimitzek, A.;
Yaprak, D.; Mudring, A-V; Physica status solidi (b), 2013, 6,
1152.
DOI:10.1002/pssb.201248547
17.Prechtl, M. H. G; Campbell, P. S; Nanotechnology Reviews2013,
2, 577.
DOI:10.1515/ntrev-2013-0019
18.Zhang, B.; Yan, N; Catalysts, 2013, 3, 543.
DOI:10.3390/catal3020543
19.Vollmer, C.; Janiak, C; Coord. Chem. Rev.2011, 255, 2039.
DOI:10.1016/j.ccr.2011.03.005
20.Neouze, M-A; J. Mater. Sci.2010, 20, 9593.
DOI:10.1039/c0jm00616e
21.Scholten, J. D.; Leal, B. C.; Dupont, J; ACS Catal.2012, 2, 184.
DOI:10.1021/cs200525e
22.Yan, N.; Xiao, C.; Kou, Y; Coord. Chem. Rev.2010, 254, 1179.
DOI: 10.1016/j.ccr.2010.02.015
23.Prechtl, M. H. G.; Campbell, P. S.; Scholten, J. D.; Fraser, G. B.;
Machado, G.; Santini, C. C.; Dupont, J.; Chauvin, Y; Nanoscale,
2010, 2, 2601.
DOI:10.1039/c0nr00574f
24.Dupont, J.; Scholten, J. D; Chem. Soc. Rev.2010, 39, 1780.
DOI:10.1039/b822551f
25.Srivastava, V; Catalysis Letters, 2014, 144, 1745.
DOI:10.1007/s10562-014-1321-6
26.Hamzaha, N.; Nordinc, N. M.; Nadzri, A. H. A.; Nik, Y. A.;
Kassim, M. B.; Yarmo, M. A; Applied Catalysis A: General,
2012, 419-420, 133.
DOI:10.1016/j.apcata.2012.01.020
27.Kumar, V. P.; Harikrishna, Y.; Nagaraju, N.; Chary, K. V. R;
Indian Journal of Chemistry, 2014, 53A, 516.