Document Type : Research Article
Authors
School of Studies in Physics, Jiwaji University, Gwalior 474 011, India
Abstract
In this paper DyMg alloy has been studied in three phases viz. B1, B2 and B3. The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The predicted lattice constants and total energy at ambient condition, respectively in B1, B2 and B3 phases are 6.395, 3.772, 6.40 Å, and
-24734.778, -24734.855, -24734.683 Ry. From the calculations it is evident that ground state phase of DyMg is B2, therefore, other parameters such as the bulk modulus, its pressure derivative, elastic constants and thermal properties related to B2 phase are presented in this paper. The obtained results are compared with the available experimented and theoretical data. The calculated band structure shows that this alloy no band gap. In order to obtain more information about the elastic properties other parameters such as Zener anisotropy factor, Poisson ratio, Young’s modulus and isotropic shear modulus are also presented. Thermal parameter such as Debye temperature, specific heat, Gruneisen parameter etc. has been determined as a function of pressure and temperature. Copyright © 2017 VBRI Press.
Keywords
Meyer-Lindenberg, A.; Denkena, B.; Windhagen, H.; J.Mater.Sci.
2013,48,39–50.
DOI:10.1007/s10853-012-6572-2
2.Willbold, E. et al; Acta Biomater.,2013,9, 8509–17.
DOI:10.1016/j.actbio.2013.02.015
3.Bobe, K. et al.; Acta Biomater.,2013, 9, 8611–23.
DOI:10.1016/j.actbio.2013.03.035
4.Bondarenko, A.; Angrisani, N.; Meyer-Lindenberg, A.; Seitz, JM.;
Waizy, H.; Reifenrath, J.; J.Biomed.Mater.Res.,PartA,2014,
102, 1449–57.
DOI: 10.1002/jbm.a.34828
5.Dziuba, D.; Meyer-Lindenberg, A.; Seitz, JM.; Waizy, H.;
Angrisani, N.; Reifenrath; Acta Biomater., 2013, 9,8548–602013.
DOI:10.1016/j.actbio.2012.08.028
6.Mordike, B.L.; Ebert, T.; Mater. Sci. Eng., A,2001,302, 37-45.
DOI:10.1016/S0921-5093(00)01351-4
7.Willbold, E. Et al.;Acta Biomater., 2015, 11, 554-562.
DOI: 10.1016/j.actbio.2014.09.041
8.Kokako, T.; Takadama, H.; Biomaterials,2006,27, 2907-15.
DOI: 10.1016/j.biomaterials.2006.01.017
9.Ding, Y; Wen, C.; Hodgson, P.; Li Y.; J. Mater. Chem. B.2014,2,
1912-33.DOI:10.1039/c3tb21746a
10.Aleonard, R.; Morin, P.;Pierre, J.; Schmitt, D.;J. Phys. F: Met.
Phys.,1976, 6.DOI: org/0305-4608/9/7/008)
11.Belakhovsky, M.; Chappert, J.; andSchmitt, D.;J. Phys. C: Solid
State Phys.,1977,10,L493. DOI:10.1088/0022-3719/10/17/006
12.Buschow, K.H. J.; Rep. Prog. Phys., 1979,42, 1373.
IOP: iop.org/0034-4885/42/8/003
13.Buschow, K.H.J.;J. Less-Common Met., 1973,33(2) 239-244.
DOI: 10.1016/0022-5088(73)90043-X
14.Kirchmayr Hans. R., Poldy Carl A., Groessinger R., Haferl R.,
Hilscher G., Steiner W. , Wiesinger G. , Handb. Phys. Chem. Rare
Earths,1979,2, 55-230.DOI: 10.1016/S0168-1273(79)02005-5
15.Zhang, H.; Shang, S.; Saal J.E.; Saengdeejing, A.; Wang, Y.; Liu,
Z.K.; intermetallics, 2009,17, 878-885.
DOI:10.1016/j.intermet.2009.03.017
16.Wu, Y.; Hu, W.; Eur. Phys. J. B, 2007, 60,75-81.
DOI: 10.1140/epjb/e2007-00323-0
17.P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic
Data for Intermetallic Phases, ASM, Metals Park, OH,1985.
DOI: 10.1007/978-3-642-84359-4
18.Tao, X.; Ouyang, Y.; Liu, H.; Feng, Y.; Du, Y.; Jin, Zh.;Solid
State Commun.,2008, 148, 314-318.
DOI:10.1016/j.ssc.2008.09.005
19.Wang, R; Wang, S.; Wu,X;Phys. Scr.,2011,83,065707
DOI:10.1088/0031-8949/83/06/065707
20.Wang, R.; Wang, S.; Wu, X.; Yao, Y.; Liu, A.; Intermetallics, 2010,
18, 2472-2476. DOI: 10.1016/j.intermet.2010.08.039
21.Wu, Y.; Hu, W.; and Sun,L.; J. Phys. D: Appl. Phys.,2007, 40,
7584-7592.DOI: 10.1088/0022-3727/40/23/052
22.Hu, W.; Xu, H.; Shu., X.; Yuan, X.; Gao, B.; and Zhang, B.; J.
Phys. D: Appl. Phys.,2000,33, 711-718.
DOI: 10.1088/0022-3727/33/6/320)
23.Tao, X.; Ouyang, Y.; Liu, H.; Feng, Y.; Du, Y.; He, Y.; Jin, Z.;
J. Alloys Compd.,2011,509, 6899-6907.
DOI: 10.1016/j.jallcom.2011.03.177
24.Luca, S.E.;Amara, M.; Galera, R.M.; Berar, J.F.;J. Phys.: Condens.
Matter, 2002, 14, 935–944.DOI:10.1088/0953-8984/14/4/325/meta
25.Bhaha, P.; Schwarz, K.;Sorantin, P.; andRickey, S.B.; Comput.
Phys. Commun.,1990, 59, 399.
DOI: 10. 1016/0010-4655(90)90187-6Z
26.Wu, Z.; Cohen, R. E.;Phys. Rev. B, 2006,73, 235116.
DOI:10.1103/PhysRevB.73.235116
27.Blanco, M. A. ; Pendas, A. M. ; Frencisco, E. ; Recio, J. M. ;and
Franco, R.; J. Mol. Struct. Theochem.1996, 368, 245-255.
DOI: 10.1016/S0166-1280(96)90571-0
28.Flo ́rez, M.; Recio, J. M.; Francisco, E.; Blanco, M. A.; and Penda ́s,
A. M.;Phys. Rev. B, 2002, 66. 144112.
DOI:10.1103/PhysRevB.66.144112
29.E. Fransisco, J. M. Recio, M. A. Blanco, A. M. Penda ́s, and A.
Costales, J. Phys. Chem.,1998, 102, 1595.DOI: 10.1021/jp972516j
30.F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 1944, 30, 244.
31.Yasemin et al.GU J Sci, 2014,27(2), 761-769.
32.M. Born, K. Huang, Dynamical Theory of Crystal Lattices,
Clarendon, 1956.
33.Johnson, R.A.;Phys. Rev. B, 1988, 37, 3924.
DOI:10.1103/PhysRevB.37.3924
34.Pettiför,D.G.; Mater. Sci. Technol., 1992, 8, 345.
DOI:10.1179/mst.1992.8.4.345
35.Bannikov, V.V.;Shein, I.R.; Ivanovskii, A.L.; Phys. Status Solidi
RRL, 2007,1, 89.DOI:10.1002/pssr.200600116
36.Pugh, S.F.; Phil. Mag.,1954, 45, 823.
DOI:10.1080/14786440808520496
37.Johnston, G. Keeler, R. Rollins, S. Spicklemire, Solid State Physics
Simulations, The Consortium for Upper-Level Physics Software,
John Wiley, New York, 1996.