Document Type : Research Article


School of Studies in Physics, Jiwaji University, Gwalior 474 011, India


In this paper DyMg alloy has been studied in three phases viz.  B1, B2 and B3. The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used.  The predicted lattice constants and total energy at ambient condition, respectively in B1, B2 and B3 phases are 6.395, 3.772,  6.40 Å, and 
-24734.778, -24734.855, -24734.683 Ry. From the calculations it is evident that ground state phase of DyMg is B2, therefore, other parameters such as the bulk modulus, its pressure derivative, elastic constants and thermal properties related to B2 phase are presented in this paper. The obtained results are compared with the available experimented and theoretical data. The calculated band structure shows that this alloy no band gap. In order to obtain more information about the elastic properties other parameters such as Zener anisotropy factor, Poisson ratio, Young’s modulus and isotropic shear modulus are also presented. Thermal parameter such as Debye temperature, specific heat, Gruneisen parameter etc. has been determined as a function of pressure and temperature. Copyright © 2017 VBRI Press.


1.Waizy, H.; Seitz, J.M.; Reifenrath, J.; Weizbauer, A; Bach, F.W.;
Meyer-Lindenberg, A.; Denkena, B.; Windhagen, H.; J.Mater.Sci.


2.Willbold, E. et al; Acta Biomater.,2013,9, 850917.


3.Bobe, K. et al.; Acta Biomater.,2013, 9, 861123.


4.Bondarenko, A.; Angrisani, N.; Meyer-Lindenberg, A.; Seitz, JM.;
Waizy, H.; Reifenrath, J.; J.Biomed.Mater.Res.,PartA,2014,
102, 144957.

DOI: 10.1002/jbm.a.34828

5.Dziuba, D.; Meyer-Lindenberg, A.; Seitz, JM.; Waizy, H.;
Angrisani, N.; Reifenrath; Acta Biomater., 2013, 9,8548602013.


Mordike, B.L.; Ebert, T.; Mater. Sci. Eng., A,2001,302, 37-45.

7.Willbold, E. Et al.;Acta Biomater., 2015, 11, 554-562.

DOI: 10.1016/j.actbio.2014.09.041

8.Kokako, T.; Takadama, H.; Biomaterials,2006,27, 2907-15.

DOI: 10.1016/j.biomaterials.2006.01.017
9.Ding, Y; Wen, C.; Hodgson, P.; Li Y.; J. Mater. Chem. B.2014,2,

10.Aleonard, R.; Morin, P.;Pierre, J.; Schmitt, D.;J. Phys. F: Met.
Phys.,1976, 6.DOI: org/0305-4608/9/7/008)

Belakhovsky, M.; Chappert, J.; andSchmitt, D.;J. Phys. C: Solid
State Phys
.,1977,10,L493. DOI:10.1088/0022-3719/10/17/006
12.Buschow, K.H. J.; Rep. Prog. Phys., 1979,42, 1373.


13.Buschow, K.H.J.;J. Less-Common Met., 1973,33(2) 239-244.

DOI: 10.1016/0022-5088(73)90043-X

Kirchmayr Hans. R., Poldy Carl A., Groessinger R., Haferl R.,
Hilscher G., Steiner W. , Wiesinger G.
, Handb. Phys. Chem. Rare
,1979,2, 55-230.DOI: 10.1016/S0168-1273(79)02005-5
15.Zhang, H.; Shang, S.; Saal J.E.; Saengdeejing, A.; Wang, Y.; Liu,
Z.K.; intermetallics, 2009,17, 878-885.


16.Wu, Y.; Hu, W.; Eur. Phys. J. B, 2007, 60,75-81.

DOI: 10.1140/epjb/e2007-00323-0

17.P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic
Data for Intermetallic Phases, ASM, Metals Park, OH,1985.

DOI: 10.1007/978-3-642-84359-4

18.Tao, X.; Ouyang, Y.; Liu, H.; Feng, Y.; Du, Y.; Jin, Zh.;Solid
State Commun.,2008, 148, 314-318.


19.Wang, R; Wang, S.; Wu,X;Phys. Scr.,2011,83,065707


20.Wang, R.; Wang, S.; Wu, X.; Yao, Y.; Liu, A.; Intermetallics, 2010,
18, 2472-2476. DOI: 10.1016/j.intermet.2010.08.039

21.Wu, Y.; Hu, W.; and Sun,L.; J. Phys. D: Appl. Phys.,2007, 40,
7584-7592.DOI: 10.1088/0022-3727/40/23/052

22.Hu, W.; Xu, H.; Shu., X.; Yuan, X.; Gao, B.; and Zhang, B.; J.
Phys. D: Appl. Phys.,2000,33, 711-718.

DOI: 10.1088/0022-3727/33/6/320)

23.Tao, X.; Ouyang, Y.; Liu, H.; Feng, Y.; Du, Y.; He, Y.; Jin, Z.;
J. Alloys Compd.,2011,509, 6899-6907.

DOI: 10.1016/j.jallcom.2011.03.177

Luca, S.E.;Amara, M.; Galera, R.M.; Berar, J.F.;J. Phys.: Condens.
, 2002, 14, 935944.DOI:10.1088/0953-8984/14/4/325/meta
25.Bhaha, P.; Schwarz, K.;Sorantin, P.; andRickey, S.B.; Comput.
Phys. Commun.,1990, 59, 399.

DOI: 10. 1016/0010-4655(90)90187-6Z

Wu, Z.; Cohen, R. E.;Phys. Rev. B, 2006,73, 235116.

27.Blanco, M. A. ; Pendas, A. M. ; Frencisco, E. ; Recio, J. M. ;and
Franco, R.; J. Mol. Struct. Theochem.1996, 368, 245-255.

DOI: 10.1016/S0166-1280(96)90571-0

28.Flo ́rez, M.; Recio, J. M.; Francisco, E.; Blanco, M. A.; and Penda ́s,
A. M.;Phys. Rev. B, 2002, 66. 144112.


29.E. Fransisco, J. M. Recio, M. A. Blanco, A. M. Penda ́s, and A.
Costales, J. Phys. Chem.,1998, 102, 1595.DOI: 10.1021/jp972516j

30.F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 1944, 30, 244.

31.Yasemin et al.GU J Sci, 2014,27(2), 761-769.

32.M. Born, K. Huang, Dynamical Theory of Crystal Lattices,
Clarendon, 1956.

33.Johnson, R.A.;Phys. Rev. B, 1988, 37, 3924.


34.Pettiför,D.G.; Mater. Sci. Technol., 1992, 8, 345.


35.Bannikov, V.V.;Shein, I.R.; Ivanovskii, A.L.; Phys. Status Solidi
RRL, 2007,1, 89.DOI:10.1002/pssr.200600116

36.Pugh, S.F.; Phil. Mag.,1954, 45, 823.


37.Johnston, G. Keeler, R. Rollins, S. Spicklemire, Solid State Physics
Simulations, The Consortium for Upper-Level Physics Software,
John Wiley, New York, 1996.