Document Type : Research Article
Authors
1 Electrochemistry Laboratory, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India
2 Electrochemistry Laboratory, Integrated Science Education and Research Centre, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India
Abstract
Present study reports an easy and cost-effective method of synthesis of Li4Fe(CN)6 cathode from K4Fe(CN)6.3H2O and LiClO4 in aqueous medium for its use in lithium-ion battery. The synthesized Li4Fe(CN)6 is characterized by UV-Vis, FTIR and cyclic-voltammetry studies. A special laboratory model lithium-ion battery is designed, where aqueous Li4Fe(CN)6 solution acts as a cathode, metallic lithium as anode and 1 molar solution of LiPF6 dissolved in water immiscible ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) as electrolyte. The cell exhibits an open circuit potential of 3.12 volt and a good charge-discharge cycling behaviour. The cell delivered a maximum discharge capacity of 86 mAhg-1 (theoretical capacity 112 mAhg-1) at 0.2 C rates with an average discharge potential of 2.1 volts. Although the ionic liquid is a little bit cost intensive, but the easy synthesis methodology with the cheapest raw materials and overall cycling efficiency, makes this technology available as a green economical energy storage device in the current battery industry. Copyright © 2017 VBRI Press.
Keywords
DOI: 10.1557/mrs2002.193
2.Mandal, B.; Basumallick, I.; Ghosh, S.; Adv. Mater. Lett., 2016, 7,
150.
DOI: 10.5185/amlett.2016.6089
3.Zhang, F.; Qi, L.; Advanced Science, 2016, 3, 1600049.
DOI: 10.1002/advs.201600049
4.Liu, C.; Nan, J.; Zuo, X.; Xiao, X.; Shu, D.; Int. J. Electrochem.
Sci, 2012, 77, 7152.
5.Ammundsen, B.; Desilvestro, J.; Groutso, T.; et al.; J.
Electrochem. Soc., 2000, 147, 4078.
DOI: 10.1149/1.1394022
6.Vitins, G.; West, K.; J. Electrochem. Soc., 1997, 144, 2587.
DOI: 10.1149/1.1837869
7.Su, Y.; Zou, Q.; Guo, M.; et al.; J. New Mater. Electrochem. Syst.,
2004, 7, 33.
8.[8].Li, Y.; Zhou, Z.; Jicail, L.; Ye, K.; Yu, K.; Synthesis and
Reactivity in Inorganic,Metal-Organic, and Nano-Metal
Chemistry, 2016, 46, 892.
DOI: 10.1080/15533174.2014.989608
9.Kim, D.K.; Muralidharan, P.; Lee, H.-W.; et al.; Nano Lett., 2008,
8, 3948.
DOI: 10.1021/nl8024328
10.Zhao, X.; Reddy, M.V.; Liu, H.; Ramakrishna, S.; Rao, G.V.S.;
Chowdari, B.V.R.; RSC Adv., 2012, 2, 7462.
DOI: 10.1039/C2RA01110G
11.Lee, S.; Cho, Y.; Song, H.-K.; Lee, K.T.; Cho, J.; Angew. Chem.
Int. Ed., 2012, 51, 8748.
DOI: 10.1002/anie.201203581
12.Yan, J.; Liu, H.; Wang, Y.; Zhao, X.; Mi, Y.; Xia, B.; Ionics, 2015,
21, 1835.
DOI: 10.1007/s11581-015-1371-9
13.Maccario, M.; Croguennec, L.; Le Cras, F.; Delmas, C.; J. Power
Sources, 2008, 183, 411.
DOI: 10.1016/j.jpowsour.2008.05.045
14.Lee, S.B.; Cho, S.H.; Cho, S.J.; Park, G.J.; Park, S.H.; Lee, Y.S.;
Electrochem. Commun., 2008, 10, 1219.
DOI: 10.1016/j.elecom.2008.06.007
15.Beninati, S.; Damen, L.; Mastragostino, M.; J. Power Sources,
2008, 180, 875.
DOI: 10.1016/j.jpowsour.2008.02.066
16.Kim, D.-H.; Kim, J.; J. Phys. Chem. Solids, 2007, 68, 734.
DOI: 10.1016/j.jpcs.2007.03.019
17.Xu, Z.; Xu, L.; Lai, Q.; Ji, X.; Mater. Res. Bull., 2007, 42, 883.
DOI: 10.1016/j.materresbull.2006.08.018
18.Fergus, J.W.; J. Power Sources, 2010, 195, 939.
DOI: 10.1016/j.jpowsour.2009.08.089
19.Roberts, M.R.; Spong, A.D.; Vitins, G.; Owen, J.R.; J.
Electrochem. Soc., 2007, 154, A921.
DOI: 10.1149/1.2763968
20.Chen, Z.; Du, B.; Xu, M.; Zhu, H.; Li, L.; Wang, W.; Electrochim.
Acta, 2013, 109, 262.
DOI: 10.1016/j.electacta.2013.07.159
21.Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G.; Materials Today, 2015,
18, 252.
DOI: 10.1016/j.mattod.2014.10.040
22.Xu, Y.; Mao, J.; J. Mater. Sci., 2016, 51, 10026.
DOI: 10.1007/s10853-016-0229-5
23.Wu, G.; Zhou, Y.; Shao, Z.; Appl. Surf. Sci., 2013, 283, 999.
DOI: 10.1016/j.apsusc.2013.07.059
24.Yang, X.; Xu, Y.; Zhang, H.; Huang, Y.a.; Jiang, Q.; Zhao, C.;
Electrochim. Acta, 2013, 114, 259.
DOI: 10.1016/j.electacta.2013.10.037
25.Mandal, B.; Basumallick, I.; Ghosh, S.; British J. Appl. Sci. Tech.,
2014, 4, 1509.
DOI:10.9734/BJAST/2014/7959
26.Yang, H.; Wu, X.-L.; Cao, M.-H.; Guo, Y.-G.; J. Phys. Chem. C,
2009, 113, 3345.
DOI: 10.1021/jp808080t
27.Recham, N.; Dupont, L.; Courty, M.; et al.; Chem. Mater., 2009,
21, 1096.
DOI: 10.1021/cm803259x
28.Jayaprakash, N.; Kalaiselvi, N.; Periasamy, P.; Int. J. Electrochem.
Sci., 2008, 3, 476.
29.Mandal, B.; Basumallick, I.; Ghosh, S.; Int. Res. J. Pure Appl.
Chem., 2015, 5, 30.
DOI: 10.9734/IRJPAC/2015/10924
30.Alias, N.; Mohamad, A.A.; J. Power Sources, 2015, 274, 237.
DOI: 10.1016/j.jpowsour.2014.10.009
31.Wang, X.; Hou, Y.; Zhu, Y.; Wu, Y.; Holze, R.; Sci. Rep., 2013, 3,
1401.
DOI: 10.1038/srep01401
32.Qian, J.; Zhou, M.; Cao, Y.; Ai, X.; Yang, H.; Advanced Energy
Materials, 2012, 2, 410.
DOI: 10.1002/aenm.201100655
33.Noerochim, L.; Yurwendra, A.O.; Susanti, D.; Ionics, 2016, 22,
341.
DOI: 10.1007/s11581-015-1560-6
34.Pfruender, H.; Jones, R.; Weuster-Botz, D.; J. Biotechnol., 2006,
124, 182.
DOI: 10.1016/j.jbiotec.2005.12.004
35.Hussain, S.; Betsch, K.; LaCroix, C.,
36.Klyuev, Y.A.; J. Appl. Spectrosc., 1965, 3, 30.
DOI: 10.1007/BF00653885
37.Idemura, S.; Suzuki, E.; Ono, Y.; Clays Clay Miner., 1989, 37,
553.
38.Balmaseda, J.; Reguera, E.; Fernández, J.; Gordillo, A.; Yee-
Madeira, H.; J. Phys. Chem. Solids, 2003, 64, 685.
DOI: 10.1016/S0022-3697(02)00378-5
39.Ganesh, V.; Pal, S.K.; Kumar, S.; Lakshminarayanan, V.; J.
Colloid Interface Sci., 2006, 296, 195.
DOI: 10.1016/j.jcis.2005.08.051