Authors

Functional Nanomaterials Research Lab, Department of Physics and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India

Abstract

Ultrathin silicon carbide (SiC) films were grown on p type Si (100) substrate by RF magnetron sputtering at constant substrate temperature of 7000C for investigating thickness dependence of structural and photoluminescence properties. The structural and Photoluminescence properties were measured by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and photospectrometer respectively. X-ray diffraction pattern revealed (102) and dominant (105) reflections which corresponds to 4H-SiC and an enhancement in (105) peak intensity with increasing thickness was also observed. The thickness measured by X-ray reflectometry (XRR) reduces from ~ 46 nm to 12 nm by decreasing deposition time (40-10 minute) which in turn reduces the crystallite size. Photoluminescence spectra show a broad peak extending from ultraviolet to blue region centered at ~ 385 nm for film of thickness ~ 46 nm (deposition time 40 min). A shifting in Photoluminescence peak towards shorter wavelength (blue shift) with decreasing SiC ultrathin film thickness was observed, which could be attributed to quantum confinement effect. The improved Photoluminescence in ultrathin nanocrystalline SiC films could make it a potential candidate in optoelectronic and biomedical applications. Copyright © 2017 VBRI Press.

Keywords

1.Nakamura, D.; Gunjishima, I.; Yamaguchi, S.; Ito, T.; Okamoto,
H.; Kondo, H.; Onda, S.;Takatori, K.; Nat., 2004,430,1009-1012.

DOI:10.1038/nature02810
2.Madar, R.; Nat., 2004, 430, 974-975.

DOI: 10.1038/430974a
3.Castelletto, S.; Johnson, B.C.; Ivady, V.; Stavrias, N.; Umeda, T.;
Gali, A.; Ohshima, T.; Nat. mater.,2014,13, 151-156.

DOI: 10.1038/nmat3806
4.
Fan, J. Y.; Li, H. X.; Iiang, J.; So, L. K. Y.; Lam, Y. W.; Chu, P.
K.;
Small, 2008, 4, 10581062.
DOI: 10.1002/smll.200800080
5.
Serdiuk, T.; Lysenko, V.; Mognetti, B.; Skryshevsky, V.;Géloën,
A.;
J. Biophotonics, 2013, 6, 291 297.
DOI: 10.1002/jbio.201200066
6.
Castelletto, S.; Johnson, B., C.; Zachreson, C.; Beke, D.; Balogh,
I. Ohshima, T.; Aharonovich, I., Gali,
A.; ACS,Nano,2014, 8,
7938
-7947.
DOI: 10. 102 1/nn502719y
7.
Zhou, J.; Song, D.; Zhao, H.;Pan, X.; Zhang, Z.; Mao, Y.; Fu,
Y.; Wang, T.; Xie, E.;
J. Lumin. 2015,157,119-125.
DOI:10.1016/j.jlumin.2014.08.049
8.
Singh, N., Singh, K., Pandey, A., Kaur, D.; Mater. Lett. 2016, 164,
28
-31.
DOI:10.1016/j.matlet.2015.10.107
9.
Prakash, R.; Jayaganthan, R; Kaur, D.; Adv. Mater. Lett. 2016,
7(9), 723
-729.
DOI: 10.5185/amlett.2016.6362
10.
Cullity, B., D.; Elements of X-ray Diffraction; Addition Wesley
Publishing Company: USA,
1956.
11.
Zhang, H.; Xu, Z.; Thin Solid films, 2004, 446, 99.
DOI: 10. 1016/S0040-6090(03)00815-0
12.
Tan, C.; Wu X.,L.; Deng, S., S.; Haung, G., S.; Liu, X., N.; bao,
X., M.;
Phys. Lett. A.; 2003, 310, 236-240.
DOI:10.1016/S0375-9601(03)00342-6
13.
Singh, K; Kaur, D.; Sens. Act. A Phys. 2015, 236, 247-256
DOI:10.1016/j.sna.2015.10.044
14.
Reitano, R., Foti, G.,Pirri, C., F.; Giorgis, F.,Mandracci, P.;
Mater.sci. Eng. C
, 2001, 15, 299-302.
DOI: 10.1016/S0928-4931(01)00231-4