Document Type : Research Article

Authors

1 Physics Department, Aristotle University Thessaloniki, Thessaloniki 54124, Greece

2 Laboratory of Alternative Fuels and Environmental Catalysis, Department of Environmental and Pollution Control Engineering, Western Macedonia University of Applied Sciences, Koila, Kozani, 50100, Greece

3 Composite and Smart Materials Laboratory (CSML), Department of Materials Science & Engineering, University of Ioannina, Ioannina 45110, Greece

4 Schoοl of Environmental Engineering, Technical University of Crete, Chania 73100, Greece

5 ICB, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, Dijon F-21078, France

Abstract

In the present work, we investigated the structural morphology of carbon species deposited on nickel catalysts supported on CeO2-ZrO2 (18.8 wt.% ceria), prepared by wet impregnation, during the dry reforming  of methane (DRM) reaction by using Thermo-gravimetric Analysis (TGA), Raman Spectroscopy, X-ray diffraction (XRD), High Resolution Transmission
Electron Microscopy (HRTEM) and Scanning Transmission Electron Microscopy- Energy dispersive spectroscopy
(STEM-EDS). TGA results show that the amount of deposited carbon decreases upon increasing reaction temperature, which is consistent with the thermodynamics of the reactions responsible for carbon formation, and Raman analysis points to a simultaneous increase in its graphitization degree. XRD measurements reveal the existence of 2H-Graphite and TEM imaging mode as well as SAED patterns depict that in all temperatures under which the catalysts were tested (550, 650, 750 and 800 oC), the formation of multi wall carbon nanotubes (MWCNT). HRTEM observations also reveal that the Ni nanoparticles are often enclosed by the MWCNT. HRTEM images identify nanocrystalline areas with a tetragonal phase, P42/nmc(137), of Ce1-xZrxO2, and STEM-EDS analysis at the nanometer scale confirms a correlation between Ce and Zr in the average atomic  ratio (% ), 1 to 5.19 - 6.94 respectively.  The results presented herein confirm that biogas mixtures can be used as precursors for the production of MWCNTs. Copyright © 2017 VBRI Press
 

Keywords

1.Iijima, S.; Nature, 1991, 354, 56.
DOI:
10.1038/354056a0
2.Adamska, M.; Narkiewics, U.; J Fluor Chem, 2017, 200, 179.

DOI:
10.1016/j.jfluchem.2017.06.018
3.Song, X.; Shang, S.; Chen, D.; Gu, X.; Constr Build Mater, 2017,
133, 57.

DOI:
10.1016/j.conbuildmat.2016.12.034
4.De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J.;
Science, 2013, 339, 535.

DOI:
10.1126/science.1222453
5.Kim, W.G.; Yong, S.D.; Yook S.J.; Ji, J.H.; Kim, K.H.; Bae,
G.N.; Chung, E.K.; Kim, J.H.; Carbon, 2017, 122, 228.

DOI:
10.1016/j.carbon.2017.06.050
6.Allen, M.J.; Tung, V.C.; Kaner, R.B.; Chem Rev, 2010, 110, 132.

DOI:
10.1021/cr900070d
7.Velasquez, M.; Batiot-Dupeyrat, C.; Gallego, J.; Santamaria, A.;
Diam Relat Mater, 2014, 50, 38.

DOI:
10.1016/j.diamond.2014.08.015
8.Gallego, J.; Sierra, G.; Mondragon, F.; Barrault, J.; Batiot-
Dupeyrat C.; Appl Catal A Gen, 2011, 397, 73.

DOI:
10.1016/j.apcata.2011.02.017
9.Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.;
Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; Science, 2006,
312, 1191.

DOI: 10.1126/science.1125925

10.Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Ahn, J.H.;
Kim, P.; Choi, J.Y.; Hong, B.H.; Nature, 2009, 457, 706.

DOI:
10.1038/nature07719
11.Shokry, S.A.; El Morsi, A.K.; Sabaa, M.S.; Mohamed, R.R.; El
Sorogy, H.E.; Egypt J Pet, 2014, 23, 189.

DOI:
10.1016/j.ejpe.2014.05.005
12.Charisiou, N.D., Baklavaridis, A.; Papadakis, V.G.; Goula, M.A.;
Waste Biomass Valori, 2016, 7, 725.

DOI:
10.1007/s12649-016-9627-9
13.Charisiou, N.D.; Siakavelas, G.; Papageridis, K.N.; Baklavaridis,
A.; Tzounis, L.; Avraam, D.G.; Goula, M.A.; J Nat Gas Sci Eng,
2016, 31, 164.

DOI:
10.1016/j.jngse.2016.02.021
14.Goula, M.A.; Charisiou, N.D.; Papageridis, K.N.; Delimitis, A.;
Pachatouridou, E.; Iliopoulou, E.F.; Int J Hydrogen Energy, 2015,
40, 9183.

DOI:
10.1016/j.ijhydene.2015.05.129
15.Bereketidou, O.A.; Goula, M.A.; Catal Today, 2012, 195, 93.

16.Yentekakis, I.V.; Goula, G.; Panagiotopoulou, P.; Katsoni, A.;
Diamadopoulos, E.; Matzavinos, D.; Delimitis, A.; Top Catal,
2015, 58, 1228.

DOI:
10.1007/s11244-015-0490-x
17.Usman, M.; Wan Daud, W.M.A.; Abbas, H.F.; Renew Sustainable
Energy Rev, 2015, 45, 710.

DOI:
10.1016/j.rser.2015.02.026
18.Avraam, D.G.; Halkides, T.I.; Liguras, D.K.; Bereketidou, O.A.;
Goula, M.A.; Int J Hydrogen Energy, 2010, 35, 9818.

DOI:
10.1016/j.ijhydene.2010.05.106
19.Charisiou, N.D.; Iordanidis, A.; Polychronopoulou, K.;
Yentekakis, I.V.; Goula, M.A.; Mater Today Proce,2017
Accepted for publication

20.Gurav, H.R.; Dama, S.; Samuel, V.; Chilukuri, S.; J CO2 Util,
2017, 20, 357.

DOI:
10.1016/j.jcou.2017.06.014
21.Titus, J.; Roussiere, T.; Wasserschaff, G.; Schunk, S.; Milanov,
A.; Schwab, E.; Wagner, G.; Oeckler, O.; Glaser, R.; Catal
Today, 2016, 270, 68.

DOI:
10.1016/j.cattod.2015.09.027
22.Serrano-Lotina, A.; Daza, L.; J Power Sources, 2013, 238, 81.

DOI:
10.1016/j.jpowsour.2013.03.067
23.Goula, M.A.; Charisiou, N.D.; Siakavelas, G.; Tzounis, L.;
Tsiaoussis, I.; Panagiotopoulou, P.; Goula, G.; Yentekakis, I.V.
Int J Hydrogen Energy, 2017, 42, 13724.

DOI:
10.1016/j.ijhydene.2016.11.196
24.Papageridis,K.N.;Charisiou,N.D.;Siakavelas,G.;Avraam,
D.G.;Tzounis,L.;Kousi,K.;Goula,M.A.; Fuel Process Technol,
2016, 152, 156.

DOI:
10.1016/j.fuproc.2016.06.024
25.Si, R; Zhang, Y.W.; Li, S.G.; Lin, B.X.; Yan, C.H.; J. Phys.
Chem. B 2004, 108, 12481

DOI:
10.1021/jp048084b
26.Nikoo, M.K.; Amin, N.A.S.; Fuel Process Technol, 2011, 92,
678.

DOI:10.1016/jfuproc.2010.11.027

27.Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier,
V.; Carbon, 2011, 49, 1581

DOI:10.1016/jcarbon.2011.03.028

28.Tzounis, L.; Kirsten, M.; Simon, F.; Mader, E.; Stamm, M.;
Carbon, 201, 73, 310.112.

DOI:
10.1016/j.carbon.2014.02.069
29.Tsirka, K.; Foteinidis, G.; Dimos, K.; Tzounis, L.; Gournis, D.;
Paipetis, A.S.; J Colloid Interface Sci, 2017, 487, 444.

DOI:10.1016/j.jcis.2016.10.075
30.Liu, J.; Wang, C.; Tu, X.; Liu, B.; Chen, L.; Zheng, M.; Zhou, C.;
Nat Commun,2012, 3, 1199.

DOI:10.1038/ncomms 2205

31. Tsiaoussis, I. et al., Book of Abstracts,Session W2
Nanoparticles,14thInternational Conferenceof Nanosciences &
Nanotechnologies, 2017.

32.Si, R.; Zhang, Y.W.; Li, S.J; Lin, B.X.; Yan, C.H.;J. Phys. Chem.
B 2004, 108, 12481.