Document Type : Research Article

Authors

1 Department of Atomic Physics, Faculty of Physics, University of Sofia, 5 James Bourchier Blvd., Sofia, 1164, Bulgaria

2 Department of Information and Communication Technologies, Faculty of Mathematics and Informatics, University of Sofia, 5 James Bourchier Blvd., Sofia, 1164, Bulgaria

3 High performance computing Laboratory, Sofia Tech Park, Lab Complex, 111 Tsarigradsko Shousse Blvd., Sofia, 1784, Bulgaria

Abstract

At the nanoscale defects (vacancies) can be useful for generating novel materials and devices. In this paper we discuss how a bi-vacancy orientation in bilayer graphene influences the total magnetization of the system.  The spin-polarized density functional theory as implemented in the Quantum Espresso code is used to calculate the total magnetization for the case of graphene sheets with  the same or different vacancy distributions. Important results are obtained:  reduction of the magnetic moment due to the interlayer bonding in AA bilayer stack with a double vacancy in each graphene layer  on the top of each other; out-off plane arrangement of the carbon atoms in the vicinity of the vacanices; opening of a gap in the band structure due to vacancies. It could be expected that the temperature and the interface will further influence the life-time of the magnetic state but the possibility of switching between non-magnetic, antiferromagnetic and ferromagnetic states as a result of mutual rotation of the defective layers remains. Copyright © 2017 VBRI Press

Keywords

1.Proykova, A.; Iliev, H.Simulated Stress and Stretch of SWCNT,
In Proceedings of SIMS2004;Brian Elmegaard, Jon Sporring,
Kenny Erleben, Kim Sorensen(eds.), Copenhagen, 2004, pp. 273-
279. ISBN87-7475-316 9

2.
Proykova,A.;J. Comput. Theor. Nanosci. , 2010,7, 1806.
3.Antonov, V.; Borisova, D.; Proykova, A.;Int.J.Quantum
Chemistry, 2013, 113(6) 792.

DOI: 10.1002/qua.24078

4.Nair, R.R.; Sepioni,M.; Tsai, I-Ling; Lehtinen,O.; Keinonen, J.;
Krasheninnikov, A.V.; Thomson, T.; Geim, A. K.; Grigorieva,I.
V.; Nature Physics,2012, 8, 199.

5.Palacios, J. J. ; Ynduráin, F.; Phys. Rev. B, 2012, 85, 245443.

6.Szałowski, K.; Carbon, 2017, 118, 78.

7.Rozhkov, A.V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, F.;
Physics Reports, 2016, 648, 1.

DOI:10.1016/j.physrep.2016.07.003

8.
Kanayama, K.; Nagashio, K.; Sci. Rep.,2015, 5, 15789.
9.
Rozhkov, A.V.; Sboychakov, A. O.; Rakhmanov,A. L.; Nori, F.;
Phys.
Rev. B, 2017, 95, 045119.
10.
Proykova, A.; Nikolova, D.; Berry, R.S.; Phys.Rev.B, 2002, 65,
085411
.
11.Giannozzi, P.; J. Phys. Condens. Matter., 2009, 21, 395502.

12.Perdew, J. P.; Burke, K.; Ernzerhof, M.;Phys. Rev. Lett., 1996, 77,
3865.

13.Monkhorst, H. J.; Pack, J. D.; Phys. Rev. B, 1976, 13, 5188.

14.Pisov, S.; Antonov, V.; Proykova, A.; Nanoscience and
Nanotechnology,2014, 15, 9.ISSN:1313-8995

15.Yang, S.; Li, S.; Tang S.; Dong, W.; Sun, W.; Shen, D.; Wang, M.;
Theoretical Chemistry Accounts, 2016, 135, 164