Authors

1 Crystal Growth Lab, Materials Department 6 (i‐meet), University of Erlangen-Nürnberg (FAU), Martensstr. 7, 91058 Erlangen, Germany

2 Department of Physics, Chemistry and Biology (IFM), Linköping University, 51883 Linköping, Sweden

Abstract

Among the various SiC polytypes, cubic 3C‐SiC is much more difficult to grow in high crystalline quality than the commercially introduced hexagonal 6H‐SiC and 4H‐SiC counterparts. Besides some benefits of 3C‐SiC for transistor applications related to a greater electron mobility and a lower metal‐oxide‐semiconductor interface trap density compared to 4H‐SiC, new potential optoelectronic applications have been introduced very recently. Boron doped 3C‐SiC may act as an ideal candidate for an intermediate band (IB) solar cell material. Aluminum doped p‐type 3C‐SiC could lead to the development of efficient optoelectrochemical water splitting cells. Finally, 3C‐SiC with its various intrinsic point defects has been considered as a suitable candidate for future spintronic‐applications. All these applications will critically depend on further understanding defect behaviour on atomic level. In our study we investigated free standing n‐type and p‐type 3C‐SiC material grown in our lab. Temperature dependent photoluminescence measurements revealed the presence of carbon vacancy related VC and VC-CSi defect transitions in the p‐type materials but not in the n‐type materials. This observation present in as grown 3C-SiC is believed to have significant impact on the optoelectronic applications. Copyright © 2017 VBRI Press.

Keywords

1.Y.M. Tairov and V.F. Tsvetkov, J. Cryst. Growth, 43, (1978),
209.

2.G. Ziegler, P. Lanig, D. Theis and C. Weyerich, IEEE Trans.
Electr.Dev., ED-30(4), (1983), 277.

3.S.G. Muller, R.C. Glass, H.M. Hobgood, V.F. Tsvetkov, M.
Brady, D. Henshall, D. Malta, R. Singh, J. Palmour and C.H.
Carter, Mater. Sci. Eng. B: Solid-State Mater. Advanced
Technol., B 80, (2001), 327.

4.D. Chaussende, P. Wellmann, M.Pons; Status of SiC bulk
growth processes; J. Phys. D: Appl. Phys. (Editor special issue:
Patrick Soukiassian) 40, p.6150-6158 (2007).

5.H. Kondo, H. Takaba, M. Yamada, Y. Urakami, T. Okamoto,
M. Kobayashi, T. Masuda, I. Gunjishima, K. Shigeto, N. Ooya,
N.Sugiyama, A. Matsuse, T. Kozawa, T. Sato, F. Hirose,
S. Yamauchi, S. Onda, Development of RAF Quality 150mm
4H-SiC Wafer, Materials Science Forum, 778-780, (2014), 17.

6.P. Wellmann, G. Neubauer, L. Fahlbusch, M. Salamon, N.
Uhlmann, Growth of SiC bulk crystals for application in power
electronic devices process design, 2D and 3D X-ray in situ
visualization and advanced doping, Cryst.Res.Technol. 50, No. 1,
29 (2015)

7.A.L. Falk, B.B. Buckley, G. Calusine, W.F. Koehl, V.V.
Dobrovitski, A. Politi, Ch.A. Zorman, Ph.X.-L. Feng, D.D.
Awschalom, Nature Communications, 4:1819 (2013)

8.M.Widmann, S.-Y. Lee, T. Rendler, N.T. Son, H. Fedder, S.
Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M.
Jamali, S.A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E.
Janzén, J. Wrachtrup, Nature Materials Vol.14, p.164 (2015)

9.D.J. Christle, A.L. Falk, P. Andrich, P.V. Klimov, J.U. Hassan,
N.T. Son, E. Janzén, T. Ohshima, D.D. Awschalom, Nature
Materials Vol.14, p.160 (2015)

10.K.Szasz, V.Ivady, I.A. Abrikosov, E.Janzen, M.Bockstedte, A.
Gali, Phys.Rev. B, 91, p. 121201(R) (2015)

11.D.J. Christle, P.V. Klimov, Ch.F. de las Casas, K. Szász, V.
Ivády, V. Jokubavicius, J.U. Hassan, M. Syväjärvi, W.F. Koehl,
T. Ohshima, N.T. Son, E. Janzén, Á. Gali, D.D. Awschalom ,
Phys.Rev. X, 7, p. 021046 (2017)

12.G. Beaucarne, A. S. Brown, M. J. Keevers, R. Corkish, M.A.
Green, Prog. Photovolt: Res. Appl., 2002, 10, p.345.

DOI: 10.1002/pip.433

13.M. Syväjärvi, Qu. Ma, V. Jokubavicius, A. Galeckas, J. Sun, X.
Liu, M. Jansson, P. Wellmann, M. Linnarsson, P. Runde, B.A.
Johansen, A. Thøgersen, S. Diplas, P.A. Carvalho, O.M. Løvvik,
D.N. Wright, A.Yu. Azarov, B.G. Svensson, Solar Energy
Materials and Solar Cells, 2016, Vol.145, p.108.

14.Qu.-B. Ma, B. Kaiser, W. Jaegermann, J. Power Sources, 41, p.
253 (2014)

15.N. Ichikawa, M. Kato, M. Ichimura, Applied Physics Express,
2015, 8, p. 091301

http://dx.doi.org/10.7567/APEX.8.091301.

16.J. Sun, V. Jokubavicius, L. Gao, I. Booker, M. Jansson, X. Liu,
J.P. Hofmann, E.J.M. Hensen, M. Linnarsson, P. Wellmann, A.
Marti, R. Yakimova, M. Syväjärvi, Materials Science Forum,
2016, Vol. 858, p. 1028,

DOI:10.4028/www.scientific.net/MSF.858.1028

17.M. Syväjärvi, R. Yakimova, H. Jacobsson and E. Janzén, Mater.
Sci. Forum, 2001, 353-356, p. 143.

18.D. Chaussende, F. Mercier, A. Boulle, F. Conchon, M. Soueidan,
G. Ferro, A. Mantzari, A. Andreadou, E.K. Polychroniadis, C. 
Balloud, S. Juillaguet, J. Camassel, M. Pons, J. Crystal Growth,
2008, 310, p. 976.

19.J.W. Sun, I.G. Ivanov, R. Liljedahl, R. Yakimova, M. Syväjärvi,
Appl. Phys. Lett., 2012, 100, p. 252101.

20.V. Jokubavicius, G. Yazdi, R. Liljedahl, I.G. Ivanov, J. Sun, X.
Liu, P. Schuh, M. Wilhelm, P. Wellmann, R. Yakimova, M.
Syväjärvi, Cryst. Growth Des., 2015, 15 (6), pp 29402947.

DOI:10.1021/acs.cgd.5b00368

21.Ph. Schuh, M. Arzig, G. Litrico, F. La Via, M. Mauceri, P.J.
Wellmann, Status Solidi A, 2017, 214, No. 4, p. 1600429

DOI:10.1002/pssa.201600429

22.M. Kaiser, S. Schimmel, V. Jokubavicius, M.K. Linnarsson, H.
Ou, M. Syväjärvi, P. Wellmann, Mat.Sci.Eng., 56, p. 012001
(2014)

23.
D. Rankl, V. Jokubavicius, M. Syväjärvi, P. Wellmann, Mater.
Sci. Fo
rum, Vols. 821-823, p. 77 (2015)
24.
M. Bockstedte, A. Mattausch, O. Pankratov, Phys. Rev. B, 68, p.
205201 (2003)

25.J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, Phys.Rev.B, 87,
p. 235207 (2013)

26.L. Gordon, A. Janotti, and C. G. Van de Walle, Phys. Rev. B, 92,
p. 045208 (2015)

27.Y. Goldberg, M.E. Levinshtein, S.I. Rumyantsev, Properties of
Advanced SemiconductorMaterials GaN, AlN, SiC, BN, SiC,
SiGe . Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John
Wiley & Sons, Inc., New York, p.93-148 (2001