Document Type : Research Article

Authors

Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India

Abstract

Dielectric dispersion and relaxation behaviour of aqueous solution grown polymeric nanocomposite films consisting of poly(vinyl alcohol) (PVA) and alumina (Al2O3) (PVA–x wt% Al2O3 (x = 0, 1, 3 and 5)) have been studied in the frequency range from 20 Hz to 1 MHz by employing dielectric relaxation spectroscopy (DRS). It is found that at constant frequency, the real part of complex permittivity increases nonlinearly with the increase of Al2O3 nanoparticles concentrations in the PVA matrix, whereas it decreases with increase of frequency at constant concentration of Al2O3. The temperature dependent investigation on PVA–3 wt% Al2O3 film reveals that the dielectric properties increase with the increase of temperature confirming its thermally activated dielectric behaviour. The ac electrical conductivity of the nanocomposites increases and the impedance values decreases with the increase of frequency which are moderately affected by Al2O3 concentrations
(x = 0 to 5 wt%) and temperatures (30 to 60 °C). The dc conductivity and relaxation time of PVA chain segmental motion of the nanocomposites obey the Arrhenius behaviour. The X-ray diffraction (XRD) study reveals that the crystallite size and amorphous phase of PVA increase with the increase of Al2O3 concentration in the PVA–Al2O3 nanocomposites. Results of this study confirm the suitability of PVA–Al2O3 nanocomposite materials as tunable nanodielectric for their use as insulator and substrate in the fabrication of microelectronic devices operated at audio and radio frequencies. Copyright © 2017 VBRI Press.
 

Keywords

1.Tan, D.; Irwin, P.; Polymer Based Nanodielectric Composites, In
Advances in Ceramics, Sikalidis, C. (Ed.); InTech: Crotia, 2011.

DOI: 10.5772/23012

2.Keith, N. J.; Dielectric Polymer Nanocomposites; Springer Science
+ Business Media, LLC, 2010.

DOI: 10.1007/978-1-4419-1591-7

3.Reddy, B. S. R.; Advances in Nanocomposites -Synthesis,
Characterization and Industrial Applications; InTech: Croatia, 2011.

4.Mittal, V.; Characterization Techniques for Polymer
Nanocomposites; Wiley-VCH Verlag GmbH & Co. KgaA, 2012.

DOI:10.1002/9783527654505

5.Sugumaran, S.; Bellan, C. S.; Optik, 2014,125,5128.

DOI:10.1016/j.ijleo.2014.04.077

6.Kinadjian, N.; Achard, M. F.; López, B. J.; Maugey, M.; Poulin, P.;
Prouzet, E.; Backov, R.; Adv. Funct. Mater., 2012,22,3994.

DOI:10.1002/adfm.201200360

7.Sengwa, R. J.; Choudhary, S.; Sankhla, S.; Compos. Sci. Technol.,
2010,70,1621.

DOI: 10.1016/j.compscitech.2010.06.003

8.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci.,2012,124,4847.

DOI:10.1002/app.35556

9.Choudhary, S.; Sengwa, R. J.; Polym. Bull., 2015,72,2591.

DOI:10.1007/s00289-015-1424-2

10.
Sinha, S.; Chatterjee, S. K.; Ghosh, J.; Meikap, A. K.; Polym.
Compos.
, 2017,38, 287.
DOI:10.1002/pc.23586

11.
Sugumaran, S.; Bellan, C. S.; Muthu, D.; Raja, S.; Bheeman, D.;
Rajamani, R.;
Polym. Adv. Technol., 2015,26,1486.
DOI:10.1002/pat.3568

12.Chibowski, S.; Paszkiewicz, M.; Krupa, M.; Powder Tech.,
2000,107,251.

13.
Sonmez, M.; Ficai, D.; Stan, A.; Bleotu, C.; Matei, L.; Ficai, A.;
Andronescu, E.;
Mater. Lett., 2012,74,132.
DOI:10.1016/j.matlet.2012.01.062

14.Lamastra, F. R.; Bianco, A.; Meriggi, A.; Montesperelli, G.; Nanni,
F.; Gusmano, G.; Chem. Eng. J., 2008,145,169.

DOI:10.1016/j.cej.2008.07.048

15.Mallakpour, S.; Sirous, F.; Prog. Org. Coatings, 2015,85,138.

DOI:10.1016/j.porgcoat.2015.03.021

16.
Mallakpour, S.; Khadem, E.; Prog. Polym. Sci., 2015,51,74.
DOI:10.1016/j.progpolymsci.2015.07.004

17.Mallakpour, S.; Dinari, M.; J. Reinf. Plast. Compos., 2013, 32,217.

DOI: 10.1177/0731684412467236

18.Nigrawal, A.; Chand, N.; Prog. Nanotech. Nanomater., 2013,2,25.

19.
Sugumaran, S.; Bellan, C. S.; Nadimuthu, M.; Iranian Polym. J.,
2015,
24,63.
DOI:10.1007/s13726-014-0300-5

20.Evan, K. A.; Key Eng. Mater., 1996,122124,489.

21.Tok, A. I. Y.; Boey, F.Y.C.; Zhao, X. L.; J. Mater. Proc. Tech.,
2006,178,270.

DOI:10.1016/j.jmatproctec.2006.04.007

22.Santos, P. S.; Santos, H. S.; Toledo, S. P.; Mater. Res., 2000,3,104.

23.Jian-hong, Y. I.; You-yi, S.; Jian-feng, G. A. O.; Chun-yan, X. U.;
Trans. Nanoferrous Met. Soc. China, 2009,19,1237.

DOI:10.1016/S1003.6326(08)60435-5

24.Wang, Y.; Shih, K.; Jiang, X.; Ceram. Int., 2012,38,1879.

DOI: 10.1016/j.ceramint.2011.10.015

25.Khom, J.; Praserthdam, P.; Panpranot, J.; Mekasuwandumrong, O.;
Catalysis Comm., 2008,9,1955.

DOI: 10.1016/j.catcom.2008.03.009

26.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci., 2014,131,
40617.

DOI:10.1002/app.40617

27.Rao, J. K.; Raizada, A.; Ganguly, D.; Mankad, M. M.;
Satayanarayana, S. V.; Madhu, G. M.; J. Mater. Sci., 2015,50,7064.

DOI: 10.1007/s10853-015-9261-0

28.Mohamad, A. A.; Arof, A. K.; Mater. Lett., 2007,61,3096.

DOI:10.1016/j.matlet.2006.11.030

 


Research Article2017, 2(4), 280-287Advanced Materials Proceedings


Copyright © 2017VBRI Press 287


29.Choudhary, S.; Sengwa, R. J.; Express Polym. Lett., 2010,9,559.

DOI:10.3144/expresspolymlett.2010.70

30.Sengwa, R. J.; Choudhary, S.; Macromol. Symp., 2016, 362, 132.

DOI:10.1002/masy.201400259

31.Tuncer, E.; Rondinone, A. J.; Woodward, J.; Sauers, I.; James, D.
R.; Ellis, A. R.; Appl. Phys. A, 2009, 94, 843.

DOI: 10.1007/s00339-008-4881-8

32.Jacob, R.; Jacob, A. P.; Mainwaring, D. E.; J. Mol. Struct.,
2009,933,77.

DOI:10.1016/j. molstruc.2007.05.041