Document Type : Research Article
Authors
Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India
Abstract
Dielectric dispersion and relaxation behaviour of aqueous solution grown polymeric nanocomposite films consisting of poly(vinyl alcohol) (PVA) and alumina (Al2O3) (PVA–x wt% Al2O3 (x = 0, 1, 3 and 5)) have been studied in the frequency range from 20 Hz to 1 MHz by employing dielectric relaxation spectroscopy (DRS). It is found that at constant frequency, the real part of complex permittivity increases nonlinearly with the increase of Al2O3 nanoparticles concentrations in the PVA matrix, whereas it decreases with increase of frequency at constant concentration of Al2O3. The temperature dependent investigation on PVA–3 wt% Al2O3 film reveals that the dielectric properties increase with the increase of temperature confirming its thermally activated dielectric behaviour. The ac electrical conductivity of the nanocomposites increases and the impedance values decreases with the increase of frequency which are moderately affected by Al2O3 concentrations
(x = 0 to 5 wt%) and temperatures (30 to 60 °C). The dc conductivity and relaxation time of PVA chain segmental motion of the nanocomposites obey the Arrhenius behaviour. The X-ray diffraction (XRD) study reveals that the crystallite size and amorphous phase of PVA increase with the increase of Al2O3 concentration in the PVA–Al2O3 nanocomposites. Results of this study confirm the suitability of PVA–Al2O3 nanocomposite materials as tunable nanodielectric for their use as insulator and substrate in the fabrication of microelectronic devices operated at audio and radio frequencies. Copyright © 2017 VBRI Press.
Keywords
Advances in Ceramics, Sikalidis, C. (Ed.); InTech: Crotia, 2011.
DOI: 10.5772/23012
2.Keith, N. J.; Dielectric Polymer Nanocomposites; Springer Science
+ Business Media, LLC, 2010.
DOI: 10.1007/978-1-4419-1591-7
3.Reddy, B. S. R.; Advances in Nanocomposites -Synthesis,
Characterization and Industrial Applications; InTech: Croatia, 2011.
4.Mittal, V.; Characterization Techniques for Polymer
Nanocomposites; Wiley-VCH Verlag GmbH & Co. KgaA, 2012.
DOI:10.1002/9783527654505
5.Sugumaran, S.; Bellan, C. S.; Optik, 2014,125,5128.
DOI:10.1016/j.ijleo.2014.04.077
6.Kinadjian, N.; Achard, M. F.; López, B. J.; Maugey, M.; Poulin, P.;
Prouzet, E.; Backov, R.; Adv. Funct. Mater., 2012,22,3994.
DOI:10.1002/adfm.201200360
7.Sengwa, R. J.; Choudhary, S.; Sankhla, S.; Compos. Sci. Technol.,
2010,70,1621.
DOI: 10.1016/j.compscitech.2010.06.003
8.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci.,2012,124,4847.
DOI:10.1002/app.35556
9.Choudhary, S.; Sengwa, R. J.; Polym. Bull., 2015,72,2591.
DOI:10.1007/s00289-015-1424-2
10.Sinha, S.; Chatterjee, S. K.; Ghosh, J.; Meikap, A. K.; Polym.
Compos., 2017,38, 287.
DOI:10.1002/pc.23586
11.Sugumaran, S.; Bellan, C. S.; Muthu, D.; Raja, S.; Bheeman, D.;
Rajamani, R.; Polym. Adv. Technol., 2015,26,1486.
DOI:10.1002/pat.3568
12.Chibowski, S.; Paszkiewicz, M.; Krupa, M.; Powder Tech.,
2000,107,251.
13.Sonmez, M.; Ficai, D.; Stan, A.; Bleotu, C.; Matei, L.; Ficai, A.;
Andronescu, E.; Mater. Lett., 2012,74,132.
DOI:10.1016/j.matlet.2012.01.062
14.Lamastra, F. R.; Bianco, A.; Meriggi, A.; Montesperelli, G.; Nanni,
F.; Gusmano, G.; Chem. Eng. J., 2008,145,169.
DOI:10.1016/j.cej.2008.07.048
15.Mallakpour, S.; Sirous, F.; Prog. Org. Coatings, 2015,85,138.
DOI:10.1016/j.porgcoat.2015.03.021
16.Mallakpour, S.; Khadem, E.; Prog. Polym. Sci., 2015,51,74.
DOI:10.1016/j.progpolymsci.2015.07.004
17.Mallakpour, S.; Dinari, M.; J. Reinf. Plast. Compos., 2013, 32,217.
DOI: 10.1177/0731684412467236
18.Nigrawal, A.; Chand, N.; Prog. Nanotech. Nanomater., 2013,2,25.
19.Sugumaran, S.; Bellan, C. S.; Nadimuthu, M.; Iranian Polym. J.,
2015,24,63.
DOI:10.1007/s13726-014-0300-5
20.Evan, K. A.; Key Eng. Mater., 1996,122–124,489.
21.Tok, A. I. Y.; Boey, F.Y.C.; Zhao, X. L.; J. Mater. Proc. Tech.,
2006,178,270.
DOI:10.1016/j.jmatproctec.2006.04.007
22.Santos, P. S.; Santos, H. S.; Toledo, S. P.; Mater. Res., 2000,3,104.
23.Jian-hong, Y. I.; You-yi, S.; Jian-feng, G. A. O.; Chun-yan, X. U.;
Trans. Nanoferrous Met. Soc. China, 2009,19,1237.
DOI:10.1016/S1003.6326(08)60435-5
24.Wang, Y.; Shih, K.; Jiang, X.; Ceram. Int., 2012,38,1879.
DOI: 10.1016/j.ceramint.2011.10.015
25.Khom, J.; Praserthdam, P.; Panpranot, J.; Mekasuwandumrong, O.;
Catalysis Comm., 2008,9,1955.
DOI: 10.1016/j.catcom.2008.03.009
26.Choudhary, S.; Sengwa, R. J.; J. Appl. Polym. Sci., 2014,131,
40617.
DOI:10.1002/app.40617
27.Rao, J. K.; Raizada, A.; Ganguly, D.; Mankad, M. M.;
Satayanarayana, S. V.; Madhu, G. M.; J. Mater. Sci., 2015,50,7064.
DOI: 10.1007/s10853-015-9261-0
28.Mohamad, A. A.; Arof, A. K.; Mater. Lett., 2007,61,3096.
DOI:10.1016/j.matlet.2006.11.030
Research Article2017, 2(4), 280-287Advanced Materials Proceedings
Copyright © 2017VBRI Press 287
29.Choudhary, S.; Sengwa, R. J.; Express Polym. Lett., 2010,9,559.
DOI:10.3144/expresspolymlett.2010.70
30.Sengwa, R. J.; Choudhary, S.; Macromol. Symp., 2016, 362, 132.
DOI:10.1002/masy.201400259
31.Tuncer, E.; Rondinone, A. J.; Woodward, J.; Sauers, I.; James, D.
R.; Ellis, A. R.; Appl. Phys. A, 2009, 94, 843.
DOI: 10.1007/s00339-008-4881-8
32.Jacob, R.; Jacob, A. P.; Mainwaring, D. E.; J. Mol. Struct.,
2009,933,77.
DOI:10.1016/j. molstruc.2007.05.041