Document Type : Research Article

Authors

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India

Abstract

In this paper, the effect of incident laser energy on the localized surface plasmon resonance (LSPR) and size of copper (Cu) nanoparticles (NPs) synthesized via pulsed laser ablation of copper in distilled water (DW) is reported. The absorption spectra show plasmon peak in the visible spectral region. The increase in the laser energy from 30 mJ to 70 mJ of the second harmonic of a Q-switched Nd:YAG laser induces a blue shift in the plasmon peak from 627 nm to 617 nm along with its broadening from 180 nm to 242 nm, respectively. These observations have been explained on the basis of the effect of the small size of the NPs formed. The Transmission electron microscope (TEM) substantiates these results as it shows the decrease in the average particle size of the NPs from ~20 nm to ~7 nm with the increase in the incident laser energy from
30 mJ to 70 mJ, respectively. By merely increasing the laser energy, a size-dependent LSPR has been achieved and this can be used as an effective way to control the size of Cu NPs and hence LSPR. Copyright © 2017 VBRI Press.

Keywords

1.Adams, S.; Zhang, J. Z.; Coord. Chem. Rev.,2016, 320-321, 18.
DOI:
10.1016/j.ccr.2016.01.014
2.Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A.; Acc. Chem.
Res., 2008, 41, 1578.

DOI: 10.1021/ar7002804

3.Chen, D.;Qiao, X.;Qiu, X.;Chen, J.; J. Mater. Sci., 2009, 44, 1076.

DOI: 10.1007/s10853-008-3204-y

4.Nguyen, T.B.;Thu Vu, T.K.;Nguyen, Q.D.;Nguyen, T.D.;
Nguyen, T.A.;Trinh, T.H.; Adv. Nat. Sci.: Nanosci. Nanotechnol.,
2012,3, 025016.

DOI: 10.1088/2043-6262/3/2/025016

5.Faraday, M.; Philos. Trans. R. Soc. London, 1857,147, 145.

6.Mie, G.; Ann. Phys.,1908, 25, 377.

7.Acquista, C.; Appl. Opt.,1978, 17,3851.

8.Rentería-Tapia, V.; Franco, A.; García-Macedo, J.; J. Nanopart.
Res., 2012,14.

DOI: 10.1007/s11051-012-0915-4

9.
Israelsen, N.D.; Hanson, C.; Vargis, E.; Sci. World J., 2015,
124582
.
DOI: 10.1155/2015/124582

10.Chen, J. J.; Wu, J.C.S.; Wu, P.C.; Tsai, D.P.; J. Phys. Chem. C,
2012,116, 26535.

DOI: 10.1021/jp309901y

11.Sepúlveda, B.; Angelomé, P.C.; Lechuga, L.M.; Liz-Marzán, L.
M.; Nano Today, 2009, 4, 244.

DOI: 10.1016/j.nantod.2009.04.00

12.Guo, X.; J. Biophotonics, 2012, 5, 483.

DOI: 10.1002/jbio.201200015

13.Ashutosh Tiwari, Atul Tiwari (Eds), In the Nanomaterials in Drug
Delivery, Imaging, and Tissue Engineering, John Wiley & Sons,
USA, 2013.

14.Yan, Z.; Chrisey, D.B.; J. Photochem. Photobio.,C, 2012, 13, 204.

DOI: 10.1016/j.jphotochemrev.2012.04.004

15.Yang,G.(Eds.); Laser Ablation in Liquids: Principles and
Applications in the Preparation of Nanomaterials; Pan Stanford
Publishing: Singapore, 2012.

16.Bogdanović, U.;Lazić, V.;Vodnik, V.;Budimir, M.;Marković, Z.;
Dimitrijević, S.; Mater. Lett., 2014, 128, 75.

DOI: 10.1016/j.matlet.2014.04.106
17.Lang, X.;Qian, L.;Guan, P.;Zi, J.;Chen, M.; Appl. Phys. Lett.,
2011, 98, 093701.

DOI: 10.1063/1.3560482

18.Nath, A.;Khare, A.; J. Appl. Phys., 2011, 110,043111.

DOI: 10.1063/1.3626463

19.Chan, G.H.;Zhao, J.;Hicks, E.M.;Schatz, G.C.;Duyne, R.P.V.;
Nano Lett., 2007, 7,1947.

DOI: 10.1021/nl070648a

20.
Takami, A.; Kurita, H.; Koda, S.; J. Phys. Chem. B, 1999, 103,
1226.

DOI: 10.1021/jp983503o

21.Khadivi, H. A.;Vahdati, J. K.;Haddad, M.S.; J. Ultrafine Grained
Nanostruct. Mater., 2015, 48,37.

DOI:
10.7508/jufgnsm.2015.01.006
22.Link, S.;El-Sayed, M.A.; J. Phys. Chem. B, 1999, 103, 8410.

DOI: 10.1021/jp9917648

23.Haider, A.F.M.Y.;Sengupta, S.;Abedin, K.M.;Talukder, A.I.;
Appl. Phys. A: Mater. Sci. Process, 2011, 105, 487.

DOI: 10.1007/s00339-011-6542-6

24.
Mogensen, K.B.;Kneipp, K.; J. Phys. Chem. C, 2014, 118, 28075.
DOI: 10.1021/jp505632n