Document Type : Research Article

Authors

1 Department of Physics, Center for Post Graduate Studies, Jain University, Bangalore, 560011, India

2 Solid State and Structural Chemistry Unit, IISc, Bangalore, 560012, India

3 Department of Electronics and Communication, MSRIT, Bangalore, 560054, India

4 Department of Physics, Sree Kongadiappa College, Bangalore, 561203, India

Abstract

Correlation between mechanical properties and MAS NMR spectroscopic revelations have been carried out on the glass system, xZnO – 50 B2O3 – (50 – x) V2O5 where 15 ≤ x ≤ 40 is prepared by a novel microwave heating method. Elastic moduli were computed from ultrasound velocities measured by a pulse echo superposition method. Both ultrasound velocities and elastic properties increase monotonically as a function of ZnO content. The variations observed in the mechanical properties were explained in view of modifications occur in the network structure consisting of borovanadate units. The bulk and shear moduli increase due to the presence of four coordinated borons along with diborovanadate units, which increases the dimensionality and connectivity of the glass network. Surprisingly, the process of the reconversion of four coordinated borons into three coordinated borons beyond 33.3mol% of modifier concentration is not initiated in these glasses, which is essentially due to the formation of [B2V2O9]2- units similar to the [B4O7]2-units. This is well supported by the monotonic increase in N4 - values even above the 33.3 mol%of modifier content. Materials with enhanced elastic properties find application in cathode materials. Copyright © 2017 VBRI Press.

Keywords

1.Rao, K.J. (Eds.);Structural Chemistry of Glasses; Elsevier, 2002.
DOI:10.1016/B978-008043958-7/50019-4

2.Vaidhyanathan, B.;Muniaganguli,;Rao, K. J.J. Solid State
Chem.,1994,113,448.

DOI:10.1006/jssc.1994.1395

3.
Sujatha,B.;Chethana,B.K.;Viswanatha,R.;Nagabhushana,H.J.
Alloys. Comp.,
2015,648,622.
DOI:10.1016/j.jallcom.2015.06.228

4.VeerannaGowda, V.C.;Chethana, B.K.;Narayana Reddy, C.Mater.
Sci. EngB.,2013,178,826.

DOI:10.1016/j.mseb.2013.04.009

5.Sujatha,B.;Viswanatha,R.;Chethana,B.K.;Nagabhushana,
H.;NarayanaReddy,C.Ionics,2016,22,563.

DOI:
10.1007/s11581-015-1580-2
6.VenkataSubba Reddy,M.;Sudhakara Reddy, M.;Narayana Reddy,
C.;Chakradhar, R.P.S.J. Alloys.Comp., 2009,479,17.

DOI
:10.1016/j.jallcom.2008.12.102
7.Pert, E.; Carmel, Y.;Birnboim, A.;Olorunyolemi, T.;Gershon,
D.;Calame, J.; Lloyd, I.K,; Wilson Jr, O.C.J. Am. Ceram.
Soc.,2001,84,1981.

DOI:
10.1111/j.1151-2916.2001.tb00946.x
8.Freeman, S.A.;Booske, J.H.; Cooper, R.F.J. Appl. Phys.,1998,83,
5761.

DOI:10.1063/1.367432
9.Rao, K.J.;Vaidhyanathan, B.;Ganguli, M.;Ramakrishnan,
P.A.Chem. Mater.,1999,11,882.

DOI:
10.1021/cm9803859
10.Anna, S.; Kalbarczyk, Kalabinski, J.; Jan, L.;Nowinski,;
WioletaŚlubowska,;MarekWasiucionek,; Jerzy, E.; Garbarczyk;
Solid State Ionics,2015,271,10.

DOI:10.1016/j.ssi.2014.11.013

11.Grabowski, P.;Nowiński, J.L.;Garbarczyk, J.E.;Wasiucionek, M.;
Solid State Ionics,2013,251,55.

DOI:10.1016/j.ssi.2013.01.016

12.Singh, K.;Ratnam, J.S.; Solid State Ionics,1988,31,221.

DOI:10.1016/0167-2738(88)90272-X

13.Rajendran, V.;Palanivelu, N.;Palanichamy, P.;Jayakumar, T.;
Baldev Raj, Chaudhuri, B.K.; J. Non-Cryst. Solids,2001, 296,39.

DOI:10.1016/S0022-3093(01)00886-9

14.Chethana, B.K.; Narayana Reddy, C.;Rao, K.J.; Mater. Res.
Bull.,2012,47,1810.

DOI:10.1016/j.materresbull.2012.03.022

15.Narayana Reddy, C.;VeerannaGowda, V.C.;Chakradhar, R.P.S.; J.
Non-Cryst.Solids,2008,354,32.

DOI:10.1016/j.jnoncrysol.2007.07.011

16.Bray, P.J.; J. Non-Cryst. Solids,1985,75,29.

DOI:10.1016/0022-3093(85)90198-X

17.Muthupari, S.; Lakshmi Raghavan, S.; Rao, K.J.; J Phy
Chem.,1996,100,951.

DOI:
10.1021/jp951961g
18.Rajiv, A.;Sudhakara Reddy M, Viswanatha R, JayagopalUchil,
Narayana Reddy C, Bull Mater Sci.,2015, 38, 985.

DOI:
10.1007/s12034-015-0958-0
19.Viswanatha, R.;VenkataSubba Reddy, M.;Narayana Reddy,
C.;Chakradhar,R.P.S. J. Mol. Struct.,2008,889,197.

DOI:10.1016/j.molstruc.2008.02.003

20.
Abe, T.J. Am. Ceram. Soc.,1952,35,284.
DOI
:10.1111/j.1151-2916.1952.tb13051.x
21.Khattak, G.D.; Mekki, A. J.; Phys. Chem. Solids,2009,70,1330.

DOI:10.1016/j.jpcs.2009.06.023

22.VeerannaGowda, V.C.; Anavekar, R.V; Ionics,2004,10,103.

DOI:
10.1007/BF02410315
23.Selvaraj, U.; Rao, K.J.Spectrochim.Acta A,1984,40,1081.

DOI:10.1016/0584-8539(84)80137-3

24.
Reddy, C.N.; Chakradhar, R.P.S. Mater. Res. Bull.,2007,42,1337.
DOI:10.1016/j.materresbull.2006.10.001

25.Wang, B.; Szu, S.P.; Greenblatt, M.J. Non-Cryst. Solids,1991,
134,249.

DOI:10.1016/0022-3093(91)90383-H

26.
Hansen, M.R.;Madsen,G.K.H.; Hans J.;Jakobsen,;Skibsted, J.; J.
Phys.
Chem. A,2005,109,1989.
DOI:
10.1021/jp045767i
27.Prabhakar, S.;Rao, K.J.; Rao, C.N.R.Proc. Roy. Soc. Lond.,1990,
429,1.

DOI:
10.1098/rspa.1990.0048