Document Type : Research Article


1 Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi, 110067, India

2 Department of Physics, North Eastern Regional Institute of Science and Technology, Nirjuli Arunachal Pradesh, 791109, India

3 School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India


Zero-valent iron nanoparticles (NZVI) were synthesized using chemical reduction method.  These were applied for lead removal from water. The structural, morphological, compositional and optical studies were studied out using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The NZVI optical energy band gap as calculated by UV absorption spectrum was 1.7 eV. The zeta potential was obtained as -32.0 mV. The biocompatibility test of NZVI was performed using MTT assay on MDCK-2 as model cell lines. Lead adsorption on NZVI was examined at different pHs, equilibrium time, temperature, and NZVI/Pb2+ concentrations. Almost 100% Pb2+ removal was achieved at NZVI dose: 0.4 g/L;
Pb2+ concentration: 50 mg/L; equilibrium time: 15 min; pH 5-6; and temperature: 25°C. Pb2+ sorption kinetic data were fitted to pseudo-first and second-order kinetic equations. Pseudo-second-order kinetic equation best fitted the data.  These studies clearly demonstrate NZVI as an efficient nano-adsorbent for Pb2+ removal from water. Copyright © 2017 VBRI Press


1.Fu, F.; Wang, Q.;J. Environ. Manage.,2011, 92, 407.
2.Wang, Y.H.; Lin, S.H.; Juang, R.S;J. Hazard. Mater.,2003, 102,

3.Järup, L.; British Medical Bulletin, 2003, 68, 167.

4.Pronczuk, J.; Brune, M.; Gore, F. (Eds.); Encyclopedia of
Environmental Health, 2011, 601.

5.Guidelines for drinking-water quality, Geneva; World Health
Organization (WHO),2008.

6.Indian standard drinking water specifications, (2nd Eds.), New
Delhi, India; Bureau of Indian Standards (BIS), 2012.

7.Drinking water standard and health advisories table, San Francisco;
United States Environmental Protection Agency (USEPA),2007.

8.Martins, B. L.; Cruz, C. C.; Luna, A. S.; Henriques, C. A;
Biochemical Engineering Journal, 2006,27, 310.

9.Batley, G.;Farrar, Y.;Anal. Chim. Acta,1978, 99, 283.

10.Rykowska, I.; Wasiak, W.; Byra;J. Chemical Papers,2008, 62,

Zamboulis, D.; Peleka, E. N.; Lazaridis, N. K.; Matis, K. A.;J.
Technol. Biotechnol., 2011, 86, 335.
12.Li, K.; Wang, X.;Bioresource Technology, 2009, 100, 2810.

13.Oubagaranadin, J. U. K.; Murthy, Z.; Ind. Eng. Chem. Res., 2009,
48, 10627.

14.Sun, S.; Wang, L.; Wang, A.;J. Hazard. Mater.,2006a, 136, 930.

15.Wang, X.; Zheng, Y.; Wang, A.;J. Hazard. Mater.,2009, 168, 970.

16.Li, X. Q.; Elliott, D.; W, Zhang.; W.X.;Critical Reviews in Solid
State and Materials Sciences,2006, 31, 111.

17.Liu, Q.; Bei, Y.; Zhou, F.;Cent. Eur.J. Chem., 2009a. 7, 79.

18.Lee, K. J.; Lee, Y.; Yoon, J.; KamalaKannan, S.; Park, S. M.; Oh,
B. T.;Environmental Technology, 2009, 30, 1425.

Cao, J.; Elliott, D.; Zhang, W.X.;J. Nanopart. Res., 2005, 7, 499.
Liu, T.; Rao, P.; Lo, I. M.;Sci. Total.Environ., 2009b, 407, 3407.
21.Ponder, S. M.; Darab, J. G.; Mallouk, T. E.;Environ. Sci. Technol.,
2000, 34, 2564.

22.Quinn, J.; Geiger, C.; Clausen, C.; Brooks, K.; Coon, C.; O'Hara, S.;
Krug, T.; Major, D.; Yoon, W.S.; Gavaskar, A.;Environ. Sci.
Technol., 2005, 39, 1309.

23.Wang, W.; Zhou, M.; Mao, Q.; Yue, J.; Wang, X.;Catal. Commun.,
2010, 11, 937.

24.Yoon, I. H.; Kim, K. W.; Bang, S; Choe, E.; Lippincott, L.;Appl.
Catal. B-Environ., 2011, 104, 185.

Arshadi, M.; Soleymanzadeh, M.; Salvacion, J., SalimiVahid, F.;J.
Colloid Interface Sci
., 2014, 426, 241.
26.Esfahani, A. R.; Firouzi, A. F.; Sayyad, G.; Kiasat, A.;Research
Journal of Environmental and Earth Sciences, 2013, 5, 548.

27.Kim, S. A.; Kamala-Kannan, S.; Lee, K. J.; Park, Y. J.; Shea,P. J.;
Lee, W. H.; Kim, H.M.; Oh, B.T.;Chemical Engineering Journal,
2013, 217, 54.

28.Zhang, X.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R.;Water
Research, 2011, 45, 3481.

29.Crane, R.; Scott, T.;Journal of Nanotechnology, 2013, 11, 173625,

Langmuir, I.;J.Am. Chem. Soc., 1918, 40, 1361.
31.Ho, Y. S.; McKay, G.;Process Biochemistry, 1999, 34, 451.

32.Gilbert, B.; Frandsen, C.; Maxey, E.; Sherman, D.;Phys. Rev.,
2009, 79, 035108.

33.Park,J.; Kim, S.; Choi, S.; Lee, H.;New Physics, 2013, 63, 818.

34.Wen, S. X.; Wang, Y. D.; Wang, Z. L.; Yang, S.;J. Phys. Chem. B.,
2005, 109, 215.

Elliott, D. W.; Zhang, W. X.;Environ. Sci. Technol., 2001, 35,

Rajput, S.; Pittman, C. U.; Mohan, D.;J. Colloid Interface Sci.,
, 468, 334.
37.Kumari, M.; Pittman, C. U.; Mohan, D.;
J. Colloid Interface Sci.,
, 442, 120.
38.Xin, X.; Wei, Q.; Yang, J.; Yan, L.; Feng, R.; Chen, G.; Du, B.; Li,
H.;Chemical Engineering Journal, 2012, 184, 132.

39.Madrakian, T.; Afkhami, A.; Ahmadi, M.;Chemosphere, 2013, 90,

40.Jabeen, H.; Christian Kemp, K.; Chandra, V.;Journal of
Environmental Management, 2013, 130, 429.

Mahdavi, M.; Ahmad, M.B.; Jelas Haron, M. D.; Gharayebi, Y.;
Shameli, K.; Nadi, B.
;J.Inorg.Organomet.Polym., 2013, 23, 599