Document Type : Research Article
Authors
1 Centre for Nanosciences, Central university of Gujarat, Gandhinagar 382030, India
2 School of Chemical Sciences, Central university of Gujarat, Gandhinagar 382030, India
Abstract
Cadmium sulphide nanocrystals (CdS NCs) of ≈ 7.0 nm have been synthesized and structurally characterized with X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscope (HR-TEM) and topographical 3D image by Atomic Force Microscopy (AFM). The binding and kinetic energies of 5th electron of 3d orbital (inner 3d5/2) and 3rd (outer 3d3/2) of Cd were 405.93 and 412.67 eV as well as 1074 and 1080.76 eV respectively determined with XPS. The CdS at 298.15 K, when dispersed in water, methanol and ethanol with 100 µM each of rhodamine B (RB), sulphorhodamine B (SRB) and carboxyfluorescein (CF) the fluorescent dyes (FD) separately has enhanced UV-Vis absorbance by 45, 30 and 25% respectively in order of (RB-CdS) > (SRB-CdS) > (CF-CdS) within 200 to 320 nm as compared to without CdS. Probably the CdS has functionalized the functional groups of the dyes that could have induced the p-conjugated bonds to detain higher UV-Vis abs. especially one -COOH, four -CH2CH3, two -SO3, four -CH2CH3 and two –COOH, one >C= with one hydroxyl group respectively. Thus, the CdS-Dye-UV-Vis model could be proposed as new finding of our studies. Copyright © 2017 VBRI Press.
Keywords
Biophysical Research Communications, 2009, 387, 164.
DOI:10.1016/j.bbrc.2009.06.144
2.Li D.; Yan Z. Y.; Cheng W. Q.; Spectrochimica Acta Part A,2008,
71, 1211.
DOI:10.1016/j.saa.2008.03.024
3.Kamruzzaman K.M.; Selim; Kang I. K.; Macromolecular
research,2009, 17, 6, 410.
DOI:10.1007/BF03218881
4.Jiang S.; Kumara M.; Gnanasammandhan; et al; J. R. Soc.
Interface,2010, 7, 18.
DOI:10.1098/rsif.2009.0243
5.Medintz I.L.; Uyeda H. T.; Goldman E. R.; et al;Nat. Mater,
2005, 4, 446.
DOI:10.1038/nmat1390
6.Chan W. C. W.; Maxwell D. J.; Gao X.; et al; S. Curr. Opin.
Biotechnol,2002, 13, 46.
PMID:11849956
7.Eastoe J.; Hollamby M. J.; Hudson L.; Advances in Colloid and
Interface Science,2006, 128, 15.
DOI:10.1016/j.cis.2006.11.009
8.Liu Z.; Zhang J.; Gao B.; Chem. Commun., 2009, 6918
DOI:10.1039/b914588e
9.Liu Y.; Li Y.; He J.; et al;J. Am. Chem. Soc.,2014, 136, 2610.
DOI:10.1039/C4PY00100A
10.Grancaric M.; Tarbuk A.; Kovacek I.; Chemical Industry &
Chemical Engineering Quarterly,2009, 15, 210.
DOI:10.2298/CICEQ0904203G
11.Shameli K.; Ahmad M. B.; International Journal of Nanomedicine,
2011, 6, 331.
DOI:10.2147.IJN.S17112
458.
DOI:10.1186/s11671-016-1653-9
13.ChunW. J.; Ishikawa A.;FujisawaH.; et al;J. Phys. Chem. B,
2003, 107, 1803.
DOI:10.1021/jp027593f
14.Schneider, G.; Decher, G.; Langmuir, 2008, 24: 1778–1789.
DOI:10.1021/la7021837
15.Rao Y.; Inwati G.; Kumar A.; et al;International Journal of
Current Engineering and Technology,2014, 4, 2492.
E-ISSN:2277–4106, P-ISSN 2347-5161
16.CullityB.D.; Stock S.R.; Elements of X-Ray Diffraction, 3rd Ed.,
Prentice-Hall Inc., 2001, 171.
ISBN:0-201-61091-4
17.A.K. Singh (ed.), "Advanced X-ray Techniques in Research and
Industries", Ios Pr Inc, 2005.
ISBN:1586035371
18.Alexei V.; Richardson T.; Langmuir, 1997, 13, 12.
DOI:10.1021/la962115f