Document Type : Research Article

Authors

1 Electrochemistry Laboratory, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India

2 Electrochemistry Laboratory, Integrated Science Education and Research Centre, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India

Abstract

Highly dispersed, porous and nano-sized FePO4 have been synthesized by a facile aqueous and alcoholic medium for their application as cathode in rechargeable lithium batteries. Various dispersing templates in association with suitable solvents are used to introduce porosity and dispersive nature among the particles and to reduce the size of the particles. Characterization with FTIR, powder XRD and SEM suggests the formation of less crystalline, pure FePO4 with high surface area and high porosity. Cyclic voltametry has been employed to test the intercalation behaviour of lithium ions and confirms the reversible nature of the material. The role of the dispersing template for the material growth and the electrochemical performances of the synthesized FePO4 as cathode in lithium battery have been discussed. It is found that poly(styrene-co-divinylbenzene) as the dispersing agent produces highly dispersed material with highest discharge capacity of 138 mAh.g-1. Copyright © 2017 VBRI Press.

Keywords

1.Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.; J. Mater. Chem., 2011, 21,
3353.

DOI: 10.1039/C0JM03287E

2.Yamada, A.; Chung, S.C.; Hinokuma, K.; J. Electrochem. Soc.,
2001, 148, A224.

DOI: 10.1149/1.1348257

3.Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; et al.; Energy. Environ.
Sci., 2011, 4, 269.

DOI:
10.1039/C0EE00029A
4.Lung-Hao Hu, B.; Wu, F.-Y.; Lin, C.-T.; Khlobystov, A.N.; Li, L.-
J.; Nat. Commun., 2013, 4, 1687.

DOI: 10.1038/ncomms2705

5.Armand, M.; Goodenough, J.B.; Padhi, A.K.; Nanjundaswamy,
K.S.; Masquelier, C.; Google Patents, 2014.

6.Yuan, X.; Liu, H.; Zhang, J.(eds); Lithium-Ion Batteries: Advanced
Materials and Technologies; CRC Press: 2016.

7.Shi, M.; Kong, L.-B.; Liu, J.-B.; et al.; Ionics, 2016, 22, 185.

DOI: 10.1007/s11581-015-1549-1
8.Nagaraju, D.H.; Kuezma, M.; Suresh, G.S.; J. Mater. Sci., 2015, 50,
4244.

DOI: 10.1007/s10853-015-8976-2

9.Ding, K.; Gu, H.; Zheng, C.; et al.; Electrochim. Acta, 2014, 146,
585.

DOI: 10.1016/j.electacta.2014.08.141

10.Sun, X.; Sun, K.; Wang, Y.; Bai, X.; Chen, C.; Cui, B.; Int. J.
Electrochem. Sci., 2013, 8, 12816.

11.Beninati, S.; Damen, L.; Mastragostino, M.; J. Power Sources,
2008, 180, 875.

DOI:
10.1016/j.jpowsour.2008.02.066
12.Miao, C.; Bai, P.; Jiang, Q.; Sun, S.; Wang, X.; J. Power Sources,
2014, 246, 232.

DOI:
10.1016/j.jpowsour.2013.07.077
13.Wu, H.; Liu, Q.; Guo, S.; Nano-Micro Lett., 2014, 6, 316.

DOI: 10.1007/s40820-014-0004-6

14.Pistoia, G.(ed) Lithium-Ion Batteries: Advances and Applications;
Elsevier Science: 2013

15.Ding, B.; Ji, G.; Sha, Z.; Wu, J.; Lu, L.; Lee, J.Y.; Energy
Technology, 2015, 3, 63.

DOI: 10.1002/ente.201402117

16.Doherty, M.; Caruso, R.A.; Smarsly, B.M.; Adelhelm, P.;
Drummond, C.J.; Chem. Mater., 2009, 21, 5300.

DOI:10.1021/cm9024167

17.Roberts, M.R.; Spong, A.D.; Vitins, G.; Owen, J.R.; J. Electrochem.
Soc., 2007, 154, A921.

DOI: 10.1149/1.2763968

18.Maccario, M.; Croguennec, L.; Cras, F.L.; Delmasa, C.; J. Power
Sources, 2008, 183, 411.

DOI:
10.1016/j.jpowsour.2008.05.045
19.Ma, Z.; Peng, Y.; Wang, G.; et al.; Electrochim. Acta, 2015, 156, 77.

DOI:
10.1016/j.electacta.2015.01.015
20.Li, Q.; Chou, S.-L.; Wang, J.-Z.; Shi, D.; Liu, H.-K.; Solid State
Ionics, 2014, 268, Part A, 117.

DOI:
10.1016/j.ssi.2014.10.001
21.Lee, S.B.; Cho, S.H.; Cho, S.J.; Park, G.J.; Park, S.H.; Lee, Y.S.;
Electrochem. Commun., 2008, 10, 1219.

DOI:
10.1016/j.elecom.2008.06.007
22.Kim, S.-W.; Ryu, J.; Park, C.B.; Kang, K.; Chem. Commun., 2010,
46, 7409.

DOI: 10.1039/C0CC02524K

23.Kahoul, A.; Hammouche, A.; Ionics, 2009.

24.Shi, Z.; Li, Y.; Ye, W.; Yang, Y.; Electrochem. Solid-State Lett.,
2005, 8, A396.

DOI: 10.1149/1.1938852

25.Prosini, P.P.; Lisi, M.; Scaccia, S.; Carewska, M.; Cardellini, F.;
Pasquali, M.; J. Electrochem. Soc., 2002, 149, A297.

DOI: 10.1149/1.1435359

26.Shi, Z.C.; Attia, A.; Ye, W.L.; Wang, Q.; Li, Y.X.; Yang, Y.;
Electrochim. Acta, 2008, 53, 2665.

DOI:
10.1016/j.electacta.2007.06.079
27.Okawa, H.; Yabuki, J.; Kawamura, Y.; Arise, I.; Sato, M.; Mater.
Res. Bull., 2008, 43, 1203.

DOI:
10.1016/j.materresbull.2007.05.024
28.Wang, W.; Wang, S.; Jiao, H.; Zhan, P.; Jiao, S.; Physical Chemistry
Chemical Physics, 2015, 17, 4551.

DOI: 10.1039/C4CP05764C

29.Hong, Y.-S.; Ryu, K.S.; Park, Y.J.; Kim, M.G.; Lee, J.M.; Chang,
S.H.; J. Mater. Chem., 2002, 12, 1870.

DOI: 10.1039/B200901C

30.Yin, Y.; Hu, Y.; Wu, P.; Zhang, H.; Cai, C.; Chem. Commun., 2012,
48, 2137. DOI: 10.1039/C2CC17381F

31.Dou, H.; Nie, P.; MacFarlane, D.R.; J. Mater. Chem. A, 2014, 2,
19536. DOI: 10.1039/C4TA04295F

32.Cui, W.-j.; Liu, H.-j.; Wang, C.-x.; Xia, Y.-y.; Electrochem.
Commun., 2008, 10, 1587.

DOI:
10.1016/j.elecom.2008.08.037
33.Miao, J.; Qian, J.; Wang, X.; Zhang, Y.; Yang, H.; He, P.; Mater.
Lett., 2009, 63, 989.

DOI:
10.1016/j.matlet.2009.01.065
34.Huang, Y.-J.; Liao, C.-H.; Huang, B.-H.; Chen, W.-Y.; Wu, P.-W.;
J. Electrochem. Soc., 2011, 158, P45.

DOI:10.1149/1.3552604

35.Reese, C.E.; Asher, S.A.; J. Colloid Interface Sci., 2002, 248, 41.
DOI:
10.1006/jcis.2001.8193
36.Antonietti, M.; Bremser, W.; Muschenborn, D.; Rosenauer, C.;
Schupp, B.; Macromolecules, 1991, 24, 6636.

DOI:10.1021/ma00025a013

37.Kuwahara, A.; Suzuki, S.; Miyayama, M.; J. Electroceram., 2010,
24, 69. DOI: 10.1007/s10832-008-9442-1

38.Kanamura, K.; Koizumi, S.; Dokko, K.; J. Mater. Sci., 2008, 43,
2138.

DOI: 10.1007/s10853-007-2011-1

39.Kim, D.-H.; Kim, J.; J. Phys. Chem. Solids, 2007, 68, 734.

DOI:10.1016/j.jpcs.2007.03.019

40.Wu, G.; Zhou, Y.; Shao, Z.; Appl. Surf. Sci., 2013, 283, 999.
DOI:
10.1016/j.apsusc.2013.07.059
41.Chen, Z.; Du, B.; Xu, M.; Zhu, H.; Li, L.; Wang, W.; Electrochim.
Acta, 2013, 109, 262.

DOI:
10.1016/j.electacta.2013.07.159
42.Mandal, B.; Basumallick, I.; Ghosh, S.; British J. Appl. Sci. Tech.,
2014, 4, 1509.

DOI:
10.9734/BJAST/2014/7959
43.Fang, Y.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y.; Nano Lett.,
2014, 14, 3539.

DOI: 10.1021/nl501152f
44.Zhao, Y.; Peng, L.; Liu, B.; Yu, G.; Nano Lett., 2014, 14, 2849.
DOI: 10.1021/nl5008568

45.Liu, Y.; Xu, Y.; Han, X.; et al.; Nano Lett., 2012, 12, 5664.

DOI: 10.1021/nl302819f

46.Guo, C.X.; Shen, Y.Q.; Dong, Z.L.; Chen, X.D.; Lou, X.W.; Li,
C.M.; Energy.
Environ. Sci., 2012, 5, 6919.
DOI: 10.1039/C2EE21320F

47.Marx, N.; Bourgeois, L.; Carlier, D.; et al.; Inorg. Chem., 2012, 51,
3146. DOI: 10.1021/ic2026279

48.Chen, L.; Wu, P.; Xie, K.; et al.; Electrochim. Acta, 2013, 92, 433.

DOI:
10.1016/j.electacta.2013.01.048
49.Zhang, S.M.; Zhang, J.X.; Xu, S.J.; Yuan, X.J.; He, B.C.;
Electrochim. Acta, 2013, 88, 287.

DOI:
10.1016/j.electacta.2012.10.029
50.Boonchom, B.; Danvirutai, C.; Ind. Eng. Chem. Res., 2007, 46,
9071. DOI: 10.1021/ie071107z

51.Yu, D.; Wu, C.; Kong, Y.; Xue, N.; Guo, X.; Ding, W.; J. Phys.
Chem. C, 2007, 111, 14394.

DOI: 10.1021/jp072893o

52.Burba, C.M.; Frech, R.; Spectrochim. Acta Part A Molecular and
Biomolecular Spectrosc., 2006, 65, 44.

DOI: 10.1016/j.saa.2005.09.025
53.Liu, H.; J. Nanopart. Res., 2010, 12, 2003.

DOI: 10.1007/s11051-010-9891-8

54.Gandrud, K.B.; Pettersen, A.; Nilsen, O.; Fjellvag, H.; J. Mater.

Chem. A
, 2013, 1, 9054.
DOI:10.1039/C3TA11550J