Document Type : Research Article
Authors
1 Department of Physics, Sri Venkateswara University, Tirupati, 517502, India
2 Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
Abstract
Aluminium titanate (Al2TiO5) thin films were deposited at room temperature by DC reactive magnetron sputtering. To make appropriate films for potential gate dielectric applications, we investigated the influence of annealing temperature on the structural, chemical and dielectric properties of Al2TiO5 thin films. From XPS studies, in as-deposited films, it has been observed that the presence of Al3+ and Ti4+oxidation states which correspond to Al2O3 and TiO2 respectively. After annealing at 400 °C in oxygen ambient, the binding energies of Al 2p, Ti 2p and O 1s were shifted by ~ 1 eV towards lower binding energy. This indicates the formation of an intermediate compound of Al2O3 and TiO2. The extracted Al, Ti and O ratio was 2:1:5 and it confirms the formation of Al2TiO5. XRD studies indicate that the as-deposited films were amorphous in nature. After annealing at 400 °C, diffraction peak at 2θ = 50.6° along (200) plane corresponds to aluminum titanate (Al2TiO5) has been observed. Metal-Insulator-Semiconductor (MIS) capacitors were fabricated and characterized to estimate the dielectric properties of the deposited films. The as-deposited films show low dielectric constant (κ = 8.1) and high leakage current density (J = 2.4x10-2 A/cm2 at -1V) values. After annealing at 400 °C the films show improved dielectric constant (κ = 9.4) and leakage current density (J = 4.6x10-9 A/cm2 at -1V) values. The enhancement in the device properties can be attributed to the improved oxide and interface quality after annealing. Equivalent oxide thickness (EOT) of less than 1nm is required to use Al2TiO5 as an alternate gate dielectric to SiO2 in CMOS industry. To achieve this scaling of the dielectric thickness (<5 nm) is needed, which is under investigation. Copyright © 2017 VBRI Press.
Keywords
DOI: 10.1021/nn303513c
2. Agarwal, T.; Soree, B.; Radu, I.; Raghavan, P.; Fiori, G.;
Iannaccone, G.; Thean, A.; Heyns, M.;Dehaene, W; Appl.
Phys. Lett., 2016, 108, 023506.
DOI: 10.1063/1.4939933
3. Xu, K.; Zhang, Z.; Wang, Z.; Wang, F.; Huang, Y.; Liao, L.;
He, J; Appl. Phys. Lett., 2015, 107, 153507.
DOI: 10.1063//1.4933346
4. He, G.; Sun, Z.(Eds.); High-k dielectrics for CMOS
technology; Wiley-VCH Verlag GmbH &Co. KGaA:
Germany, 2012
DOI: 10.978.3/527/330321
5. Yota, J.; ECS Trans., 2013, 53, 281.
DOI: 10.1149/05301.0281ecst
6. Jiahui, Z.; Hudong, C.; Honggang, L.; Guiming, L.; Wenjun,
X.; Qi, L.; Simin, L.; Zhiyi, H.; Haiou, L; J. Semicond.,2015,
36, 054004.
DOI: 10.1088/1674-4926/36/5/054004
7. Majewski, L. A.; Schroeder, R.; Grell, M; Adv. Funct. Mater.,
2005,15, 1017.
DOI: 10.1002/adfm.200400570
8. Kundu, S.; Kumar Roy, S.; Banerji, P.; J. Phys. D: Appl.
Phys., 2011,44, 155104.
DOI: 10.1088/0022-3727/44/15/155104
9. Yota, J.; Shen, H.; Ramanathan, R.; J. Vac. Sci. Technol.,
2013, A 31, 01A134.
DOI: 10.1116/1.4769207
10. Kondaiah, P.; Madhavi, V.; Sekhar, C.M.;Rao, M.G.;
Uthanna, S.; Sci. Adv. Mater., 2013, 5, 398.
DOI: 10.1166/sam.2013.1470
11. Auciello, O.; Fan, W.; Kabius, B.; Saha, S. J.; Carlisle, A.;
Chang, R. P. H.; Lopez, C.; Irene, E. A.; Baragiola, R. A;
Appl. Phys. Lett., 2005,86, 042904.
DOI: 10.1063/1.1856137
12. Vitanov, P.; Agostinelli, G.; Harizanova, A.; Ivanova, T.;
Vukadinovic, M.; Le Quang, N.; Beaucarne, G.; Sol. Energy
Mater. Sol. Cells, 2006, 90, 2489.
DOI:10.1016/j.solmat.2006.03.020
13. Anantha Kumar, S.; Jayasankar, M.; Warrier, K. G. K.; Acta
Mater., 2006, 54, 2965.
DOI: 10.1016/j.actamat.2006.02.032
14. Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.;
Auciello, O.; Chang, R. P. H.; Ramesh, R.; J. Appl. Phys.,
2003, 94, 6192.
DOI: 10.1063/1.1616984
15. Lee, S. Y.; Bang, K. S.; Lim, J. W.; J. Electron. Mater., 2014,
43, 3204.
DOI: 10.1007/s11664-014-3286-z
16. Stabel, A.; Caballero, A.; Espinos, J. P.; Yubero, F.; Justo, A.;
Gonzalez-Elipe, A. R.; Surf. Coat. Technol., 1998, 100-101,
142.
DOI: 10.1016/S0257-8972(97)00603-8
17. Pu, H.; Li, H.; Yang, Z.; Zhou, Q.; Dong, C.; Zhang, Q.; ECS
Solid State Lett., 2013, 2, N35.
DOI: 10.1149/2.007310ssl
18. Abdullah, W.; Int. Lett. Chem., Phys. Astron., 2015, 56, 142.
DOI: 10.18052/www.scipress.com/ILCPA.56.142
19. Zaitsu, S. I.; Jitsuno, T.; Nakatsuka, M.; Yamanaka, T.;
Motokoshi, S.; Appl. Phys. Lett., 2002, 80, 2442.
DOI: 10.1063/1.1467622
20.Kukli, K.; Ritala, M.; Leskela, M.; Sundqvist, J.; Oberbeck,
L.; Heitmann, J.; Schroder, U.; Aarik, J.; Aidla, A.; Thin Solid
Films, 2007, 515, 6447.
DOI: 10.1016/j.tsf.2006.11.049
21. Abaffy, N. B.; McCulloch, D. G.; Partridge, J. G.; Evans, P. J.;
Triani, G; J. Appl. Phys., 2011, 110, 123514.
DOI: 10.1063/1.3667134
22. Kuo, D. H.; Shueh, C. N.; Thin Solid Films, 2005, 478, 109.
DOI: 10.1016/j.tsf.2004.10.021
23. Kuo, D. H.; Shueh, C. N.; J. Non-Cryst. Solids, 2004, 336,
120.
DOI: 10.1016/j.jnoncrysol.2004.01.002
24. Leinen, D.; Lassaletta, G.; Fernandez, A.; Caballero, A.;
Gonzalez-Elipe, A. R.; Martin, J. M.; Vacher, B.; J. Vac. Sci.
Technol., 1996, A 14, 2842.
DOI: 10.1116/1.580233
25. Von Richthofen, A.; Cremer, R.; Domnick, R.; Neuschutz, D.;
Thin Solid Films, 1998, 315, 66.
DOI: 10.1016/S0040-6090(97)00745-1
26. Shi, L.; Xia, Y. D.; Xu, B.; Yin, J.; Liu, Z. G.; J. Appl. Phys.,
2007, 101, 034102.
DOI: 10.1063/1.2432401
27.Musil, J.; Satava, V.; Cerstvy, R.; Zeman, P.; Tolg, T.; Surf.
Coat. Technol., 2008, 202, 6064.
DOI: 10.1016/j.surfcoat.2008.07.012
28. Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.;
Raymond, R. H.; Gale, L. H.; Surf. Interface Anal., 1981, 3,
211.
DOI:10.1002/sia.740030506
29. Dhonge, B.P.; Mathews, T.; Tripura Sundari, S.; Thinaharan,
C.; Kamruddin, M.; Dash. S.; Tyagi, A. K.; Appl. Surf. Sci.,
2011, 258, 1091
DOI: 10.1016/j.apsusc.2011.09.040
30. Fu, Y.; Du, H.; Zhang, S.; Huang, W.; J. Mater. Sci. Eng. A,
2005, 403, 25.
DOI: 10.1016/j.msea.2005.04.036
31. Altindal, A.; Coskun, M.; Bekaroglu, O.; Synth. Met., 2012,
162, 477.
DOI: 10.1016/j.synthmet.2012.01.002
32. Neamen, D.A.; Semiconductor Physics and Devices; Tata
McGraw-Hill Publishing Company Limited: India, 2007.
DOI: 10.976/0/07/061712
33. Conley, D.J.U.S. Patent 7947128 B2, 2011.
34. Ahn, J. H.; Kwon, S. H.; ACS Appl. Mater. Interfaces, 2015, 7,
15587.
DOI:10.1021/acsami.5b04303