Document Type : Research Article

Authors

1 Advanced Functional Materials Laboratory, Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140407, Punjab, India

2 Defence Institute of Advanced Technology (DU), Pune, 411025, India

3 Department of Mathematics, Punjabi University, Patiala, 147 002, India

4 Nanotoxicological laboratory, School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India

Abstract

Boron carbide is well known metallurgical product used in cutting/coating tool industry. Nanostructured boron carbide finds its application in medical, optical and defence industry due to its structural, mechanical and optical properties. In present paper, we report the effect of processing parameters (reaction time and temperature/pressure) on the synthesis of nanostructured boron carbide. Detailed X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) analysis was done along with theoretical studies of pressure. Results show that the best temperature for synthesis of nanoscale boron carbide is 800 °C. Copyright © 2017 VBRI Press.

Keywords

1.Jeintschko, W.; Hoffmann, R. P. R. D. (Eds.);Handbook of
Ceramic Materials; Wiley: USA,2000.

2.Ektarawong
, A.;Simak, S. I.;Hultman,L.; Birch, J.;Tasnádi,F.;
Wang
, F.;Alling, B.; J. Chem. Phys., 2016, 144, 134503.
3.
Golubeva, N. A.; Plyasunkova, L. A.; Kelina, I. Y.; Antonova, E. S.;
Zhuravlev, A. A.;
Refract. Ind. Ceram., 2015, 55, 414.
4.
Din, R.; Zahid, G. H.; Ahmad, E.; Maqbool, M.; Subhani, T.; Syed,
W. A.; Hussain, S. Z.;
J. Inorg. Organomet. Polym. Mater., 2015,
2
5, 995.
5.Luo, W. B.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; J. Mater. Chem. A,
2015, 3, 18395.

6.Dong, H.; Zhu, E. X.; Lu, E. K.; J. Mater. Sci.,2008, 43, 4247.

7.
Mortensena, M. W.; Sørensenb, P. G.; Bjorkdahlb, O.; Jensenb, M.
R.;
Gundersenc, H. J. G.; Bjørnholma, T.; Appl. Radiat. Isot., 2006,
64
, 315.
8.Najaf, A.; Fard, F. G.; Rezaie, H. R.; Ehsani, N.; Ceram. Int., 2012,
38, 3583.

9.Gu, Y.; Chen, L.; Qian, Y.; Zhang, W.; Ma, J.; J. Am. Ceram. Soc.,
2005, 88, 225.

10.Zhang, C. H.; Kwong, F. L.; Lian, J. B.; Ng, D. H. L.; Physica B,
2013, 429, 38.

11.
Tao, X.; Li, Y.; Du, J.; Xia, Y.; Yang, Y.; Huang, H.; Gan, Y.;
Zhang, W.; Li, X.;
J. Mater. Chem., 2011, 21, 9095.
12.Du, S.W.; Tok, A. L. Y.; Boey, F.Y.C.; Solid State Phenom., 2008,
136, 23.

13.Weimer, A. W.; Moore, W. G.; Roach, R. P.; Hitt, J. E.; Dixit, R. S.;
Pratsinis, S. E.; J. Am. Ceram. Soc., 1992, 75, 2509.

14.
Singh, P.;Singh, B.; Kumar, M.; Kumar, A.;Ceram. Int., 2014, 40,
15331.

15.Thomson, G. W.; Chem. Rev., 1946, 38, 1.

16.Kumar, A; Singh, K.; Pandey, O. P.; J. Mater. Sci. Technol., 2014,
30, 112.

17.
Kumar, V.; Singh, K.; Kumar, A.; Kumar, M.; Singh, K.; Vij, A.;
Thakur, A.;
Mater. Res. Bull., 2017, 85, 202.
18.Wang, B.; Ostrikov, K. K.; Laan, T. V.; Shao, R.; Li, L.; J.Mater.
Chem. C, 2015, 3, 1106.

19.Bao, R.; Chrisey, D. B.; Cherniak, D. J.; J. Mater. Sci., 2011, 46,
3952.

20.Rodríguez, M. G.; Kharissova, O. V.; Méndez, U. O.; Rev. Adv.
Mater. Sci., 2004, 7, 55.