Document Type : Research Article
Authors
1 School of Mechanical Engineering, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
2 School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, 751013, India
Abstract
The present study attempts to explore the possibilities of utilising industrial waste as filler material in bamboo fibre reinforced composites. Cenosphere, a mixture of alumina and silicon rich industrial waste produced during burning of coal in thermal power plants, is used as filler material in this study. It's use in composites would address environmental and economic concern arising in storage and handling of enormous quantity of waste discharged by the thermal power plants. In order to determine the heat insulation property of this polymer composites with varying bamboo fibre (18, 28, 33, 43 wt%) and cenosphere filler (0, 2.5, 3, 4.5, 6 wt%) content, thermal conductivity test is performed by using Lee’s disc apparatus. Experimental results reveal that with the increase in fibre loading, the thermal conductivity of the composite decreases and it is minimum at 43 wt% of fibre. It is also found that introduction of cenosphere fillers on bamboo fibre reinforced composite results in further reduction of its thermal conductivity. Hence improved thermal insulation property of these composites can be gainfully utilised in insulation application. The thermal conductivity of these composites is also evaluated by using Finite Element Method, which is in good agreement with that of experimental results. The test results for thermal conductivity are also in good agreement with various models available in the literature. Copyright © 2017 VBRI Press.
Keywords
DOI:10.1177/0731684408094221
2.Li, X.; Tabil, L.G.; Panigrahi, S.; J. Polym. Environ., 2007, 15, 25.
DOI:10.1007/s10924-006-0042-3
3.Verma, C.S.; Chariar, V.M;. Compos. Part B. 2013, 45,376.
DOI:10.1177/1420326X14535793
4.Ermias, G.K.; Anton, K.; Mahmoodul, H.; Lawrence,
T.D.;Giovanni, B.; Brunetto,M.; Compos. Struct. 2015,134,789.
DOI: 10.1016/j.compstruct.2015.08.106Composite
with Different
Number of
lamina
Wt.
% of
Fibre
Experimental
value
ROMFEM
(Percentage error with
respect to the experimental
value)
3180.3210.311
(3.1)
0.312
(2.8)
5280.3100.295
(4.8)
0.297
(4.6)
7330.2960.288
(2.7)
0.290
(2.0)
9430.2700.275
(-1.7)
0.278
(2.5)20406080
0
4000
8000
0% NaOH
5% NaOH
Intensity (arbitrary unit)
2 (Degree)Composite
with
Different
wt% of
cenosphere
ROM
(%)
Maxw
ell’s
model
Brugge
man’s
model
Neilso
n’s
model
FEM
(%)
Percentage error with respect to the
experimental value
1.52.1612.0492.0492.3351.686
3.02.2362.0182.0182.5961.605
4.52.0551.7371.7372.6131.619
6.02.0101.6011.6012.7931.435
Research Article2017, 2(2), 97-102Advanced Materials Proceedings
Copyright © 2017VBRI Press 102
5.Ridzuan, M.J.M ; Abdul Majid, M.S. ; Afendi, M. ; Azduwin, K. ;
Amin, N.A.M.; Zahri, J.M. ; Gibson, A.G.;Compos. Struc., 2016,
141,110.
DOI: 10.1016/j.compstruct.2016.01.030
6.Faisal, A.A.; Marija, M. D.; Radmila, M.J.H.; Vesna, R.; Dusica,
B.S.; Petar, S.U.; Radoslav, A.F.A. A.; Marija, M. D.; Radmila,M.
J.H.; Vesna, R.;Dusica, B.S.; Petar, S. U.; Radoslav, A.; Mat.
Desig., 2015, 86, 575.
DOI:10.1016/j.matdes.2015.07.069
7.Das, A.; Satapathy, B.K.; Mater. Des.,2011, 32, 1477.
DOI: 10.1016/j.matdes.2010.08.041
8.Dalbehera, S.; Achraya, S.K.;J. Industr. Text.,2015,
DOI:1528083715577936
9.Jena, H.; Pandit, M.; Pradhan, A.; J. Reinf. Plast. Compos.,2013,
32, 794.
DOI:10.1177/0731684413476925
10.Sampathkumarana, P.; Kishoreb, S.S.; Pattanashetti, V.V.; Shekhar,
M.; Niranjan, H.B.; Ind. J. Eng. Mat. Sci.,2015, 22, 354.
11.Wen, Z.; Itoh, T.; Uno Kubo, M.; Yamamoto, O.; Solid State Ionics,
2003, 160, 141.
DOI:10.1016/S0167-2738(03)00129-2
12.Mamunya, Y.P.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Eur.
Polym. J.,2002, 38, 887.
DOI: 10.1016/S0014-3057(02)00064-2
13.Geon-Woong, L.; Min, P.; Junkyung, K.; Jae, I. L.; Ho, G.Y.;
Composites Part A,2006, 37, 727.
DOI: 10.1016/j.compositesa.2005.07.006
14.Kiran, M.C.; Nandanwar, A.; Naidu, M.V.;Rajulu, K.C.V.; Int. J.
Agri. Fores.,2012, 2, 257.
DOI: 10.5923/j.ijaf.20120205.09
15.Azarfar, S; Movahedirad, S.; Sarbanha, A.A.; Norouzbeigi, R.;
Beigzadeh, B. Appl.Therm. Eng., 2016,105,142.
DOI: 10.1016/j.applthermaleng.2016.05.138
16.Sombatsompop, N.; Wood, A.K.; Polym. Test., 1997, 16, 203.
DOI:10.1016/S0142-9418(96)00043-8
17.Ming-xia, S.; Yin-xin, C.;, Jing, H.;, Yao-ming, Z.; Int. J. Miner.
Metall. Mater., 2011, 18, 623.
DOI:10.1109/ICSD.2013.6619698
18.Qiuhong, M.;, Shengyu, F.; Guangzhao, D.; Polym. compos., 2007,
28, 125.
DOI:10.1002/pc.20276
19.Progelhof, R.C. Throne, J.L.; Ruetsch, R.R.; Polym. Eng. Sci.,1976,
16, 615.
DOI: 10.1002/pen.760160905
20.Nayak, R.; Dora, T.; Satapathy, A.; Compos. Sci. Technol., 2010,
48, 576.
DOI:10.1016/j.commatsci.2010.02.025
21.Chandradass, J.; Ramesh kumar, M.; Velmurgan, R.; J. Reinf. Plast.
Compos.,2008, 27, 1585.
DOI:10.1177/0731684407081368
22.Liu,K; Yang,Z; Takagi, H; Compos. Struct., 2014, 108, 987.
DOI:10.1016/j.compstruct.2013.10.036
23.Guo, L; Chen, F; Zhou, F, Liu, X, Xu, Z;Composites Part B:
Engineering, 2015, 68, 300.
DOI:10.1016/j.compositesb.2014.09.004
24.Zach, J; Slávik, R; Novák, V; Procedia Eng., 2016, 151, 352.
DOI:10.1016/j.proeng.2016.07.389
25.Kalaprasada, G.; Pradeep, P.; Mathew, G.; Pavithra, C.; Thomas, S.;
Compos. Sci. Technol.,2000, 60, 2967.
DOI:10.1016/S0266-3538(00)00162-7
26.Idiculaa, M.; Boudenne, A.; Umadevi, L.; Ibos, L.; Candau, Y.;
Thomas, S.; Compos. Sci. Technol.,2006, 66, 2719.
DOI:10.1016/j.compscitech.2006.03.007
27.Agarwal, R.; Saxena, N.S.; Sharma, K.B.; Thomas, S.; Pothan,
L.A.; Ind. J. Pure. Appl. Phys.,2003, 41, 446.
DOI:IJPAP 44(10) 746-750.pdf
28.Kushwaha, P.; Kumar, R.; J. Reinf. Plast. Compos.,2009, 28, 2851.
DOI: 10.1177/0731684408100691
29.Barbero, E.J. (Eds.); Introduction to Composite Materials and
Design. Taylor and Francis: UK,1998.
30.Hui, P.M.; Zhang, X. Markworth, A.J.; Stroud, D.;J. Mater. Sci.,
1999, 34, 5497.
DOI:10.1023/A:1004760427981
31.Turner, M.J.; Clough, R.W.; Martin, H.C.; Topp, L.J.; J. Aero. Sci.,
1956, 23, 805.
DOI: 10.2514/8.3664
32.Islam, M.R.; Pramila, A.; J. Compos. Mater., 1999, 33, 1699.
DOI:10.1177/002199839903301803
33.Roy S.; Reddy, J.N. Computational Modelling of Polymer
Composites, A Study of Creep and Environmental Effects, CRC
Press: USA, 2013.
34.Kumlutas, D.; Tavman, I.H.; J. Thermoplast. Compos. Mater.,2006,
19, 441.
DOI:10.1177/0892705706062203
35.Yin, Y.; Tu, S.T.; J. Reinf. Plast. Compos., 2002, 21,1619.
DOI: 10.1177/0731684402021018470
36.Ray, D.; Sarkar, B.K.; Rana, A.K.; Bose, N.R.; Composites Part A,
2001, 32,119.
DOI:10.1016/S1359-835X(00)00101-9