Authors

1 P G & Research Department of Physics, Thiru A. Govindasamy Government Arts College, Tindivanam 604001, India

2 Department of Physics, Adhiparasakthi Engineering College, Melmaruvathur 603319, India

3 P G & Research Department of Physics, Thiru Kolanjiappar Government Arts College, Vriddhachalam 606001, India

4 Department of Physics, Aruna Vidhya Arts and Science College, Thiruvannamalai 606601, India

Abstract

Glycine has the simplest structure among all amino acids. Many attempts have been made to grow different derivative crystals of glycine. However, the title compound was not investigated thoroughly to understand the usability of the crystal for its device application. In the present investigation, using slow evaporation solution growth technique, single crystals of glycine have been grown in the presence of potassium iodide. Detailed investigations were made on structural and thermal properties of the grown crystals. Structural analysis was carried out by X-ray diffraction method, Fourier Transform Infrared, FT-Raman and Nuclear Magnetic Resonance spectral methods to conform the grown crystals. Thermal stability of the grown crystals was studied by Thermogravimetric (TG) and Differential Thermal analysis (DTA) and it was found that the crystal is stable up to 113°C. UV-Vis spectral analysis has been carried out and the crystal has not any significant absorbance in the entire visible region. Dielectric studies for the grown samples have also been studied. Nonlinear optical property has been confirmed by Kurtz powder technique and found that the grown crystal has nearly fifty percentage of SHG efficiency as that of standard KDP sample. The observed properties have confirmed that the grown crystal is suitable for nonlinear optical applications. Copyright © 2017 VBRI Press.

Keywords

1.Agarwal M.D.; Choi J.; Wang W.S.; Bhat K.; Lal R.B.; Shields
A.D.; Penn B.G.; Frazier D.O; J. Cryst. Growth,1999, 204, 179.

DOI:10.1016/S0022-0248(99)00200-6

2.Zyss J.; Nicoud F.; Curr. Opin. Solid State Mater. Sci., 1996,1,
533.
DOI:10.1016/S1359-0286(96)80069-6
3.Petrosyan H.A.;Karapetyan H.A.;Yu Antipin M.;Petrosyan
A.M.;J. Cryst. Growth,2005, 275, e1919.
DOI:10.1016/j.jcrysgro.2004.11.258
4.
Anandan P.; Parthipan G.; Saravanan T.; Mohan Kumar R.;
Bhagavannarayana G.; Jayavel R.;
Physica BCondens.Matter.,
2010
, 405, 4951.DOI:10.1016/j.physb.2010.09.042
5.
Ambujam K.; Rajarajan K.; Selvakumar S.; Madhavan J.; Gulam
Mohamed, Sagayaraj P.;
Opt. Mater., 2007,29, 657.
DOI:10.1016/j.optmat.2005.11.008

6.
Selvaraju K.; Valluvan R.; Kumararaman S.; Mater. Lett., 2006,
60
, 2848.DOI:10.1016/j.matlet.2006.01.105
7.Shanmugavadivu Ra.; Ravi G.; Nixon Azariah A.; J. Phys. Chem.
Solids, 2006,67, 1858.

DOI:10.1016/j.jpcs.2006.04.014

8.Ambujam K.; Rajarajan K.; Selvakumar S.; Vetha Potheher I.;
Joseph Ginson P.; Sagayaraj P.; J. Cryst. Growth,2006, 286, 440.

DOI:10.1016/j.jcrysgro.2005.10.013

9.
Uma J.; Rajendran V.; Optik,2014, 125, 816.
DOI:10.1016/j.ijleo.2013.07.067

10.
Parameswari A.; Premkumar S.; Premkumar R.; Milton Franklin
Benial A.; J.
Mol. Struct., 2016, 1116, 180.
DOI:10.1016/j.molstruc.2016.03.025

11.Anbuchudar Azhagan S.; Ganesan s.;Optik,2013, 6, 526.

DOI:
http://dx.doi.org/10.1016/j.ijleo.2011.12.029
12.Anbu Chudar Azhagan S.; Ganesan s.;Optik,2013, 23, 6456.

DOI:
http://dx.doi.org/10.1016/j.ijleo.2013.05.030
13.Ezhil Vizhi R.; Yogambal C.; Rajan Babu D.; Optik,2015,1, 77.

DOI:
http://dx.doi.org/10.1016/j.ijleo.2014.08.15114.Kurtz S.K.; Perry T.T.; J. Appl. Phys.,1968, 39, 3798.
DOI:
http://dx.doi.org/10.1063/1.1656857
15.Albrecht G; Corey R.B; J. Am. Chem. Soc., 1939, 61, 1087.

DOI:10.1021/ja01874a028

16.Silverstein R.M.; Basseler G.C.; Morill T.C.; Spectrometric
Identification of Organic Compounds, fifth ed., Wiley, New Delhi,
1998.

17.Meijerink A.; Blasse G.; Glasbeek M.; J.Phys.Condens. Matter,
1990,2, 6303.

DOI:
http://dx.doi.org/10.1088/0953-8984/2/29/008
18.
Magesh M.; Anandha Babu G.; Ramasamy P.; J. Cryst. Growth,
2011,
324, 201.
DOI:10.1016/j.jcrysgro.2011.03.057