Document Type : Research Article

Authors

1 Department of Physics, National Institute of Technology, Manipur, Langol 795004, India

2 Manipur University, Canchipur, Imphal 795003, India

Abstract

Substituted lithium ferrite having the chemical formula Li0.35 Ni0.1 Mn0.1 Zn0.2 Fe2.35 O4  have been synthesized by the citrate precursor method. The sample was given pre-sintering at 650oC in a conventional furnace. Final sintering was carried out at 900oC in a conventional surface and another in a microwave furnace. The spinel phase structure of the conventional (CS) and microwave sintered (MS) samples was confirmed by the XRD patterns. From the analysis of XRD data, the crystallite size of the samples was estimated and smaller crystallite size was observed in the microwave sintered sample. Scanning Electron Microscopy (SEM) was also carried out. The dielectric studies were investigated. Room temperature dielectric constant ( ) and dielectric loss (tan d) were studied as a function of frequency. Experimental results show dispersion for variation of dielectric constant and dielectric loss tangent with frequency for both CS and MS sample. However, microwave sintered sample show lower dielectric constant and losses. Possible mechanism is being discussed. Copyright © 2016 VBRI Press.

Keywords

1.Horvath, M. P.; J. Magn. Magn. Mater., 2000, 215, 171.
DOI:10.1016/S0304-8853(00)00106-2.

2.Sun, C.; Sun, K.; Solid state Commun., 2007, 141, 258.

DOI:10.1016/j.ssc.2006.10.039

3.
Kotnala, R. K.; Dar, M. M.; Verma, V.; Singh, A. P.; Siddiqui,
W.A;
J. Magn. Magn. Mater., 2010, 322, 3714.
DOI:10.1016/jmmm.2010.07033

4.Singh, V.; Tiwari, A.; Carbohydrate research, 2008, 343, 151.

5.Soibam, I.; Sorokhaibam, S; American Journal of Material Science
and Engineering., 2014, 2, 42.

DOI:10.1269/ajmse-2-3-3

6.Shannigrahi, S.; Tannn, I.K.C; Technologies., 2015, 3, 47.

DOI:10.3390/technologies3010047

7.Raghupathi, C.; Vijaya, J. J.; Kennedy, J. L; J. Saudi Chem. Soc.,
2014

DOI:10.1016/j.jscs.2014.006
8.Soibam, I.; Phanjoubam, S.; Sharma, H.B.; Sarma, H.N.K.;
Laishram, R; Prakash, C; Solid State Commun., 2008, 148, 399.

DOI:10.1016/jssc.2008.09.029

9.Verma, V.; Pandey, V.; Singh, S.; Aloysius, R. P.; Annapoorni, S.;
Kotanala, R. K; Physica B., 2009, 404, 2309.

DOI:10.1016/j.physb.2009.04.034

10.Aruna, S. T.; Mukasyan, A. S; Curr. Opin. Solid State Mater. Sci.,
2008, 12, 44.

DOI:10.1016/jcossms.2008.12.002

11.Zaki, H. M.; Al-Heniti, S.; Umar, A.; Al-Marzouki, F.; Abdel-
Daiem, A.; Elmosalami, T.A.;Dawoud, H.A.; Al-Hazmi, F.S.; Ata-
Allah, S.S ; J. Nanosci. Nanotechnol., 2013, 13, 4056.

DOI:10.1166/jnn.2013.7434

12.
Hessien, M. M; J. Magn. Magn. Mater., 2008, 320, 2800.
DOI:10.1166/jnn.2008.06.018

13.Kadam, R. H.; Biradar, A. R.; Mane, M. L.; Shirsat, S. E; J. Appl.
Phys., 2012, 112, 043902.

DOI:10.1063/1.4746746

14.Maisnam, M.; Phanjoubam, S.; Solid state commun., 2012, 152,
320.

DOI:10.1016/jssc.2011.11.019

15.S.A Mazen and Elmosalami T.A; Int. Sch. Res. Notices., 2011, 9,
820726.

DOI:10.5402/2011/820726

16.
Verma, A.; Chatterjee, R; J. Magn. Magn. Mater., 2006, 306, 313.
DOI:10.1016/jmmm.2006.03.033

17.Sattar,A.A.; El-Sayed , HM .; Agami, WR; Am. J. Appl. Sci., 4, 89.

DOI:10.3844/ajassp.2007.89.93

18.
Sanakaranarayan V.K.; Sreekumar C.; Curr. Appl. Phys., 2003, 3,
205.

DOI:10.1016/S1567-1739(02) 00202-X

19.Breval E.; Cheng J. P.; Agrawal D. K.; Gigl P.; Dennis M.; Roy R.;
Papworth A.; J, Mater. Sci. Eng., A.,2005, 391, 285.

DOI:10.1016/j.msea.2004.08.085

20.Penchal R. M.; Madhuri M.; Shadhana K.; Kim I.G.; Hui K.N.;
Siva K.K.V.; Ramakrishna R. R ; J. Sol-Gel Sci. Techno., 2014, 70,
400.

DOI:10.1007/s10971-014-3295-7

21.
Kuruva P.; Rajaputra, S. U. M. S.; Sanyadanam, S.; Sarabu M. R;.
Turk. J. Phys
., 2013, 37, 312.
DOI:10.3906/fiz-1303-4

22.Koops, C.G.; Phys. Rev.,1951, 1,121.

DOI:10.1103/PhysRev.83.121

23.Soibam, I.; Phanjoubam, S.; Radhapiyari, L.; Physica B.,2010,
405, 2181.

DOI:10.1016/J.Physb .2010.01.131

24.Shannigrahi Santiranjan; Tannn Ivaaan KiannngChee,
Technologies, 2015, 3, 47.

DOI:10.3390/technologies3010047

25.
Kumar, P.; Juneja, J.K.; Prakash, C.; Singh, S.; Ravi, K.; Raina,
K.K;
Ceram. Int., 2014, 40, 2501.
DOI:10.1016/j.ceramint.2013.07.063

26.Raman R; Murthy K.R.V; Vishwanathan; J. Appl. Phys., 1991, 7,
69.

27.Yen -Pei Fu, Chin-Shang Hsu; Solid State Commun., 2005, 134,
201.

DOI:10.1016/j,ssc.2004.12.035

28.Hench L.L.; West, J.; Principles of electronic ceramics: John Wiley
and sons

29.Rezlescu, N.; Doroftei, C.; Popa, P. D; Sens. Actuators B Chem.,
2008, 133, 420.

DOI:10.1016/j.snb.2008.02.047