Document Type : Research Article

Authors

Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India

10.5185/amp.2017/114

Abstract

Electrospun nanofibers of Polyaniline (PANI)/SnO2 composite based gas sensor for hydrogen (H2) and carbon monoxide (CO) gas were prepared by electrospinning technique. The synthesized material was characterized using UV-Visible, XRD and SEM-EDX analyses. The average diameter of PANI/SnO2 composite was found to be high as compared to that of pristine SnO2 nanofibers having 200 nm diameter may be due to micelle formation of PANI on the surface of SnO2 nanofibers.
The enhanced sensing properties in the form of sensitivity factor, time taken to response and recovery during exposure and de-exposure of Gas and repeatability were studied. The SnO2/PANI composite nanofibers showed high sensitivity and response to H2 gas compared to CO gas to 0.1% and maximum sensitivity was observed at 35˚C for H2 gas. Fast Response-Recovery Time for 1000-5000 ppm of H2 i.e. less than 30 secs were observed. Due to room temperature operation of the sensor, it is promising for environmental applications. The results indicate that aligned SnO2/PANI composite fibers are promising candidate for fast detection of H2 gas. Copyright © 2017 VBRI Press.
 

Keywords

1.Rad, A.; Nasimi, N.; Jafari, M.; Shabestari, D.; Gerami, E.; Sens.
Actuators, B, 2015, 220, 641.

DOI:10.1016/j.snb.2015.06.019
2.Deshpande, N.; Gudage,Y.; Sharma, R.; Vyas, J.; Kim, J.; Lee, Y.;
Sens. Actuators, B, 2009, 138, 76.

DOI:10.1016/j.snb.2009.02.012

3.Tiwari, A.; Gong, S.; Electroanalysis, 2008, 20, 1775.

4.Sharma, H.; Sonwane, N.; Kondawar, S.; Fibers Polym., 2015, 16,
1527.

DOI:10.1016/j.mspro.2015.06.040

5.
Kim, B.; Oh, S.; Han, M.; Im, S.; Synth. Met., 2001, 122, 297.
DOI:10.1016/S0379-6779(00)00304-0

6.MacDiarmid, A.; Epstein. A.; Synth. Met., 1994, 65, 103.

DOI:10.1016/0379-6779(94)90171-6

7.Monredon, S.; Cellot, A.; Ribot, F.; Sanchez, C.; Armelao, L.;
Gueneau, L.; Delattre, L.; Mater.Chem., 2002, 12, 2396.

DOI:10.1039/B203049G

8.Kondawar, S.; Agrawal,S.; Nimkar, S.; Sharma,H.; Patil, P.; Adv.
Mater. Lett.,2012, 3, 393.

DOI:10.5185/amlett.2012.6361

9.Kondawar, S.; Acharya, S.; Dhakate, S.;Adv. Mater. Lett., 2011, 2,
362.

DOI:10.5185/amlett.2011.9107am2011

10.
Wankhede,Y,; Kondawar,S.; Thakare, S.; More, P.; Adv. Mater.
Lett
., 2013, 4, 89.
DOI:10.5185/amlett.2012.icnano.108

11.
Nandapure, B.; Kondawar, S.; Salunkhe, M,; Nandapure, A.; Adv.
Mater. Lett
., 2013, 4, 134.
DOI:10.5185/amlett.2012.5348

12.
Kondawar, S.; Patil, P.; Agrawal, S.; Adv. Mater. Lett., 2014, 5, 389.
DOI:10.5185/amlett.2014.amwc.1037

13.
Chen, J.; Yang, J.; Yan, X.; Xue, Q.; Synth. Met., 2010, 160, 2452.
DOI:
10.1016/j.synthmet.2010.09.026
14.
Kondawar, S.; Pethe, S.; Adv. Mater. Lett., 2014,5, 414.
DOI:10.5185/amlett.2014.amwc.1039

15.Grimm, S.; Giesa, R.; klarek, K.; Langner, A.; Gosele, U; Schmidt,
H.; Steinhart, M.; Nano Lett., 2008, 8, 1954.

DOI:
10.1021/nl080842c
16.Guana, H.; Fana, L.; Zhanga, H.; Qua, X.; Electrochim. Acta., 2010,
56, 964.

DOI:
10.1016/j.electacta.2010.09.078
17.Huang, J.; Pure Appl. Chem., 2006, 78, 15.

DOI:
10.1351/pac200678010015
18.Tiwari, A.; Kobayashi, H. (Eds.); Responsive Materials and
Methods; Wiley: USA,2013.

DOI: 10.5185/sbm-2010-01

19.Tseng, R. J.; Huang, J.; Ouyang, J.; Kaner, R. B.; Yang, Y.; Nano
Lett. 2005, 5, 1077.

DOI:
10.1021/nl050587l
20.Jing, X.; Wang, Y.; Wu, D.; Qiang, J.; Ultrason. Sonochem., 2007,
14, 75.

DOI:
10.1016/j.ultsonch.2006.02.001
21.Olad, A.; Nosrati, P.; Res. Chem. Intermed., 2012, 38, 323.

DOI:
10.1007/s11164-011-0349-0
22.Yang, M.; Cao, K.; Sui, L.; Ying, Q.; Zhu, J.; Waas, A.; Arruda, E.
M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A.; ACS Nano., 2011, 5,
6945.

DOI:
10.1021/nn2014003
23.Chang, S.; Hsueh, T.; Chen, I.; Hsieh, S.; Chang, S.; Hsu, C.; Lin,
Y.; Huang, B.; IEEE Trans. Nanotechnol., 2008, 7, 754.

DOI:
10.1109/TNANO.2008.2005917
24.Ali, Y.; Kumar, V.; Dhaliwal, A.S.; Sonkawade, R.G.; Adv. Mat.
Lett., 2013, 4, 368.

DOI:
10.5185/amlett.2012.9422
25.
Sanjay, S.; Yadav, R.; Pandey, A.; Adv. Mat. Lett., 2013, 4, 378.
DOI:
10.5185/amlett.2012.9427
26.Greiner, A.; Wendorff, J.; Angew; Chem. Int. Ed., 2007, 46, 5670.

DOI:
10.1002/anie.200604646
27.Wu, W.; Zhang, S.; Xiao, X.; Jiang, C.; Adv. Mat. Lett., 2013, 4,
610.

DOI:
10.5185/amlett.2012.12477
28.
Mathai, C.; Saravanan, S.; Anantharaman, M.; Venkitachalam, S.;
Jayalekshmi, S.;
J. Phys. D: Appl. Phys., 2002, 35, 2206.DOI:10.1088/0022-3727/35/17/318
29.
Kargirwar, S.; Thakare, S.; Choudhary, M.; Kondawar, S.; Dhakate,
S.;
Adv. Mat. Lett., 2011, 2,397. DOI:10.5185/amlett.2011.424530.Zuo, F.; Angelopoulos, M.; MacDiarmid A.; Epstein, A.; Phys.Rev.
B
., 1987, 36, 3475.DOI:10.1103/PhysRevB.36.347531.Kobayashi, A.; Ishikawa, H.; Amano K.; Satoh, M.; J. Appl. Phys.,
1993, 74, 296.

DOI:10.1063/1.354106

32.
More, P.; Khollam, Y.; Deshpande, S.; Sainkar, S.; Date, S.;
Karekar R.; Aiyer, R.;
Mater. Lett., 2003, 57, 2177.DOI:10.1016/S0167-577X(02)01170-933.More, P.; Khollam, Y.; Deshpande, S.; Sainkar, S.; Date, S.;
Karekar, R.; Aiyer, R.;
Mater. Lett., 2003, 8, 205.
DOI:10.1016/S0167-577X(03)00446-4

34.Lantoo V.; Ramppainen P.; J. Electrochem. Soc., 1998, 135, 2550.

DOI:10.1149/1.2095378