Document Type : Research Article
Authors
Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
Abstract
Phase pure bismite nanoparticles were successfully prepared by means of hydrothermal method by varying the precursor solution pH from 10 to 13. The as-prepared nanoparticles were characterized by different techniques such as X-ray diffraction pattern (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX). The effects of pH on the structural properties of these nanoparticles were corroborated using XRD and Raman spectrum. From the XRD pattern it is found that all the samples are polycrystalline in nature and the Raman spectra are used to confirm the phase transformation of the Bi2O3 nanoparticles. At the low pH value, the SEM image reveals that as-prepared samples are homogeneous with particle size of ~ 25 nm and with the increase in the pH value spherical particle forms uniform blocks like morphology for both the samples prepared at the pH 12 and 13. Copyright © 2017 VBRI Press.
Keywords
Films., 2005, 473, 230.
DOI: 10.1016/j.tsf.2004.07.061
2.Dimitrov, V.; Sakka. S; J. Appl. Phys.,1996,79, 1736.
DOI: 10.1063/1.360962
3.Gobrecht, H.; Seeck, S.; Bergt, H.E.; Martens, A.; Kossmann, K;
Phys. Stat. Sol., 1969, 33, 599.
DOI: 10.1002/pssb.19690330213
4.Dolocan, V; Appl. Phys., 1978, 16, 405.
DOI: 10.1007/BF00885866
5.Arya, S.; Singh, H.; Thin Solid Films., 1979, 62, 353.
DOI: 10.1016/0040-6090(79)90010-5
6.Hyodo, T.; Kanazawa, E.; Takao, Y.; Shimizu, Y.; Egashira, M;
Electrochemistry., 2000, 68, 24.
ISSN: 1344-3542
7.Sammes, N. M.; Tompsett, G. A.; Nafe, H.; Aldinger, F; J. Eur.
Ceram. Soc., 1999, 19, 1801.
DOI: 10.1016/S0955-2219(99)00009-6
8.Shuk, P.; Wiemhofer, H.D.; Guth, U.; Gopel, W.; Greenblatt, M;
Solid State Ionics.,1996, 89, 179.
DOI: 10.1016/0167-2738(96)00348-7
9.Gualtieri, A.F.; Immovilli, S.; Prudenziati, M; Powder Diffraction.,
1997, 12, 90.
ISSN: 0885-7156
10.Jungang Hou; Chao Yang; Zheng Wang; Weilin Zhou; Shuqiang
Jiao; Hongmin Zhu; Appl. Catal., B: Environ., 2013, 142, 504.
DOI: 10.1016/j.apcatb.2013.05.050
11.Ying Xiong; Mingzai Wu; Jing Ye; Qiannwang Chen.; Mater.
Lett., 2008, 62, 1165.
DOI: 10.1016/j.matlet.2007.08.004
12.Ling, B.; Sun, X.W.; Zhao, J.L.; Shen, Y.Q.; Dong, Z.L.; Sun,
L.D.; Li, S.F.; and Zhang, S; J. Nanosci. Nanotechnol., 2010, 10,
8322.
DOI: 10.1166/jnn.2010.3051
13.Latha Kumari; Jin-Han Lin and Yuan-Ron Ma.; Nanotech., 2007,
18, 295605.
DOI: 10.1088/0957-4484/18/29/295605
14.Hariharan, S.; Udayabhaskar, R.; Ravindran, T.R.; Karthikeyan, B;
Spectrochim Acta Part A: Mol. Biomol. Spectrosc., 2016, 163, 13.
DOI: 10.1016/j.saa.2016.02.045
15.Yi Wang; Yunling Li.; J. Colloid Interface Sci., 2015, 454, 238.
DOI: 10.1016/j.jcis.2015.05.001
16.Ya-Jing Huang; Yue-Qing Zheng; Hong-Lin Zhu; Jin-Jian Wang.;
J. Solid State Chem., 2016, 239, 274.
DOI: 10.1016/j.jssc.2016.05.006
17.Eva Bartonickova; Jaroslav Cihlar; Klara Castlova.; Process. Appl.
Ceram., 2007,1, 29.
DOI: 10.2298/PAC0702029B
18.Sadhana, K.; Naina Vinodini, S.E.; Sandhya, R.; Praveena, K; Adv.
Mater. Lett., 2015, 6, 717.
DOI: 10.5185/amlett.2015.5874
19.Lines, M.E; J. Non-Cryst. Solids., 1987,89, 143.
DOI: 10.1016/S0022-3093(87)80329-0
20.Lines, M.E.; Miller, A.E.; Nassau, K.; Lyons, K.B; J. Non-Cryst.
Solids., 1987, 89, 163.
DOI: 10.1016/S0022-3093(87)80330-7
21.Rao, G.S.; Veeraiah, N;J. Alloys Compd.,2001, 327, 52.
DOI: 10.1016/S0925-8388(01)01559-6
22.Hazra, S.; Mandal, S.; Gosh, A; Phys. Rev B., 1997, 56, 8021.
DOI: 10.1103/PhysRevB.56.8021
23.Sreenivasu, D.; Chandramouli, V; Bull. Mater. Sci., 2000, 23, 281.
DOI: 10.1007/BF02720083
24.Denisov, V.N.; Ivlev, A.N.; Lipin, A.S.; Mavrin, B.N.; and Orlov,
V.G; J.Phys.: Condens. Matter., 1997, 9, 4967.
DOI: 10.1088/0953-8984/9/23/020
25.Vivier, V.; Regis, A.; Sagon, G.; Nedelec, J.Y.; Yu, L.T.; Cachet-
Vivier, C; Electrochim. Acta., 2001, 46, 907
DOI: 10.1016/S0013-4686(00)00677-0
26.Baia, L.; Stefan, R.; Kiefer, W.; and Simon, S; J. Raman
Spectrosc., 2005, 36, 262.
DOI: 10.1002/jrs.1306
27.Kumari, L.; Lin, J.; and Ma, Y; J.Phys.: Condens.Matter., 2007,
19, 11.
DOI: 10.1088/0953-8984/19/40/406204
28.Franklin, D; J. Solid State Chem., 1992, 97, 319.
DOI: 10.1016/0022-4596(92)90040-3
29.Bourja, L.; Bakiz, B.; Benlhachemi, A.; Ezahri, M.; Valmalette,
J.C.; Villain, S.; Gavarri, J.R; Adv. Mater. Sci. Eng., 2009, 1.
DOI: 10.1155/2009/502437
30.Maria Vila; Carlos Diaz-Guerra; Katharina Lorenz; Javier
Piqueras; Eduardo Alves; Silvia Nappini and Elena Magnano;
J. Mater. Chem. A.,2013, 1, 7920.
DOI: 10.1039/C3TA11342F
31.Betsch, R.J.; and White, W.B.; Spectrochim. Acta,Part A., 1978,
34, 505.
DOI: 10.1016/0584-8539(78)80047-6
32.Gondal, M.A., Tawfik A.Saleh.; and Q. Drmosh; Sci. Adv. Mater.,
2012, 4, 1.
DOI: 10.1166/sam.2012.1310
33.Ling, B.; Sun, X.W.; Zhao, J.L.; Shen, Y.Q.; Dong, Z.L.; Sun,
L.D.;Li, S.F.; and Zhang, S; J. Nanosci. Nanotechnol., 2010, 10,
8322.
PMID: 21121334
34.Ardelean, I.;Todor, I.; Pascuta, P; Mod. Phys. Lett B., 2004, 18,
275.
DOI: 10.1142/S0217984904006792
35.Ho, C.H.; Chan, C.H.; Huang, Y.S.; Tien, L.C.; Chao, L.C; Opt.
Express., 2013, 21, 11965.
DOI:10.1364/OE.21.011965
36.Franklin D. Hardcastle and Israel E. Wachs; J. Solid State Chem.,
1992,97, 319.
DOI:10.1016/0022-4596(92)90040-3