Document Type : Research Article
Authors
1 Centre for Alternative Energy Options, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
2 Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-85, Telangana, 500085, India
Abstract
Hydrogen is an environmental friendly fuel, which has the potential to significantly used of fasil files; however several important challenges must defeat before it can be extensively used. Thermo catalytic decomposition of methane (TCD) is one of the most useful method, which will meet the future demand and hence an attractive route for COx free production of hydrogen which is essential in fuel cell. In the present study, we made an attempt on hydrogen production with Cu-Al2O3 and 5, 10, 15 & 20wt% of Ni modified Ni/Cu-Al2O3 catalysts. It is also observed that, the conversion order is Cu-Al2O3<5 wt% Ni/Cu-Al2O3 ~ 20 wt% Ni/Cu-Al2O3 <15 wt% Ni/Cu-Al2O3 < 10 wt% Ni/Cu-Al2O3 catalysts. It is observed that, while increasing the loadings of nickel in Ni/Cu-Al2O3 the efficiency of thermo catalytic decomposition of methane is also increasing. Among five catalysts prepared the 10wt% Ni/Cu-Al2O3 catalyst is showing good catalytic activity.SEM images of catalysts after thermo catalytic decomposition of methane shows the formation of carbon nanofibers. XRD patterns of the Cu-Al2O3 and 5,10,15 & 20wt%Ni/Cu-Al2O3 catalysts revealed, fairly crystalline peaks of which may responsible for the increase in the catalytic life and the formation of carbon nanofibers. The optimum hydrogen production of 70 volume % was observed with 10 wt% Ni/Cu-Al2O3 catalyst along with hydrogen carbon fibers were also found, which can be used as catalyst support. Copyright © 2016 VBRI Press.
Keywords
Moliner, R.; Journal of Power Sources, 2007, 169, 103.
DOI:10.1016/j.jpowsour.2007.01.045
2.Abanades, A.; Rubbi, C.; Salmieri, D.; International Journal of
Hydrogen Energy, 2013, 38, 8491.
DOI:10.1016/j.ijhydene.2012.08.138
3.Muradov, N.Z.; International Journal of Hydrogen Energy, 1993,
18, 211.
DOI:10.1016/0360-3199(93)90021-2
4.Ashok, J.; Subrahmanyam, M.; Venugopal, A.; Catal. Surv. Asia.,
2008, 12, 229.
DOI:10.1007/s10563-008-9054-4
5.Choudhary, T V.; Goodman, D W.; Catalysis Today, 2002, 77, 65.
DOI:10.1016/S0920-5861(02)00233-X
6.De Jong, K. P.; Geus, J. W.; Catal. Rev: Science & Engineering.,
2000, 42, 481.
DOI:10.1081/CR-100101954
7.Li, Y.;Chen,L.;Chang, L.; Appl. Catal A: Gen., 1997, 163, 45.
DOI:10.1016/S0926-860X(97)00116-6
8.Sakae, T.; Emi, K.; Yo, T.; Kiyoshi, O.;Journal of Catalysis., 2003,
219, 176.
DOI:10.1016/S0021-9517(03)00152-0
9.Kuvshinov,G. G.;Mogilnykh,Y. I.;Kushinov,D. G.; Catal. Today.,
1998, 42, 357.
DOI:10.1010/S0920-5861(98)00115-1
10.Piao,L.;Li,Y.;Chen,J.;Liu,C.;Lin,J. Y. S.; Catal. Today., 2002,
74, 145.
DOI:10.1016/S0920-5861(01)00540-5
11.Zhao, N. Q.; He, C. N.; Ding, J.; Zou, T. C.;, Qiao, Z. J.; Shi, C. S.;
Du, X. W.; Li, J. J.; Li, Y. D.; J Alloys & Compounds., 2007, 428,
79.
DOI:10.1016/j.jallcom.2006.03.067
12.Bai, Z.; Chen,H.; Li, B.; Li, W.; International Journal of Hydrogen
Energy., 2007, 32, 32.
DOI:10.1016/j.ijhydene.2006.06.030
13.Venugopal, A.;Kumar, S. N.; Ashok, J.; Hari,P. D.; Kumari, D. V.;
Prasad, K. B. S.; Subrahmanyam, M.; International journal of
Hydrogen Energy., 2007, 32, 1782.
DOI:10.1016/j.ijhydene.2007.01.007
14.Pinilla, J. L.;Suelves, I.;Lazaro, M. J.;Moliner, R.;Palacios, J. M.;
InternationalJournal of Hydrogen Energy, 2008, 33, 2515.
DOI:10.1016/j.ijhydene.2008.02.041
15.Takenaka, S.;Serizawa, M.;Otsuka, K.; Journal of Catalysis, 2004,
222, 520.
DOI:10.1016/j.jcat.2003.11.017
16.Ermakova, M. A.;Ermakova, D. Y.; Catalysis Today, 2002, 77,225.
DOI:10.1016/S0920-5861(02)00248-1
17.Shah, N.; Panjala, D.; Huffman, G. P.; Energy Fuel, 2001, 15, 1528.
DOI:10.1021/ef0101964
18.Konieczny, A.;Mondal, K.; Wiltowski, T.; Dydo, P; International
Journal of Hydrogen Energy, 2008, 33, 264.
DOI:10.1016/j.ijhydene.2007.07.054
19.Avdeeva, L. B.;Kochubey, D. I.;Shaikhutdinov, S. K.; Applied
Catalysis A: Gen, 1999, 177, 43.
DOI:10.1016/S0926-860X(98)00250-6
20.Chen, J. L.;Zhou, X.; Cao, L.; Li, Y.; Studies in Surface Science &
Catalysis, 2004, 147,73.
DOI:10.1016/S0167-2991(04)80030-2
21.Piao, L. Y.;Chen, J. L.;Li, Y. D.; China Particuology, 2003, 1, 266.
DOI:10.1016/S1672-2515(07)60007-4
22.Muradov, N.; Catalysis Communications, 2001, 2, 89.
DOI:10.1016/S1566-7367(01)00013-9
23.Dunker, A. M.;Kumar, S.;Mulawa, P. A.; International Journal of
Hydrogen Energy, 2006, 31, 473.
DOI:10.1016/j.ijhydene.2005.04.023
24.Krzyzynski, S.;Kozlowski, M.; International Journal of Hydrogen
Energy, 2008, 33, 6172.
DOI:10.1016/j.ijhydene.2008.07.091.
25.Reshetenko, T. V.;Avdeeva, L. B.;Ismagilov, Z. R.;Chuvillin, A.
R.;Ushakov, V. A.; Applied Catalysis A: Gen, 2003, 247, 51.
DOI:10.1016/S0926-860X(03)00080-2
26.Ashok, J.;Subrhamanyam, M.;Venugopal, A; International Journal
of Hydrogen Energy, 2008, 33, 2704.
DOI:10.1016/J.IJHYDENE.2008.03.028
27.Ashok, J.;Reddy, P. S.;Raju, G.;Subrhamanyam, M.;Venugopal A.;
Energy & Fuels, 2009, 23, 5.
DOI:10.1021/EF8003976
28.Takenaka, S.;Shigeta, Y.;Tanabe, E.;Otsuka, K.; Journal of
Catalysis, 2003, 220, 468.
DOI:10.1016/S0021-9517(03)00244-6
29.Ashok, J.;Reddy, P. S.;Raju, G.;Subrhamanyam, M.;Venugopal A.;
International Journal of Hydrogen Energy, 2008, 33, 4809. DOI:
10.1016/J.IJHYDENE.2008.06.004
30.Suelves, I.;Lazaro, M. J.;Moliner, R.;Echegoyen, Y.;Palacios, J. M;
Catalysis Today,2006, 116, 271.
DOI:10.1016/J.CATTOD.2006.05.071
31.Echegoyen, Y.;Suelves, I.;Lazaro, M. J.;Moliner, R.;Palacios, J. M.;
Journal of Power Sources, 2007, 169, 150.
DOI:10.1016/J.JPOWSOUR.2007.01.058