Department of Physics, Sri Venkateswara University, Tirupati 517502, A.P. India.


Pure and (Mn, Ni) co-doped ZnS nano particles are synthesized by co-precipitation method using Poly Vinyl Pyrrolidone (PVP) as stabilizer. Powder XRD results exhibit cubic blended structure for all samples. The average crystallite sizes observed to be between around 2-3 nm. Uneven changes of crystal structure of concerned nanoparticles are confirmed by the Transmission Electron Microscopy (TEM) studies. The crystalline sizes obtained from TEM (3-5 nm) agree well those of XRD data. The SEM micro graphs of (Mn, Ni) co-doped nanoparticles result in agglomeration with spherical shape. The EDAX Spectra reveal that in the chemical composition of the prepared samples, the co-doped elements are incorporated into ZnS lattice. Photoluminescence (PL) has been studied at 306 nm wavelength. Pure sample exhibits sharp peaks at 438 nm, 450 nm and 466 nm. The (Mn, Ni) co-doped powders exhibit slightly less intense peaks. The magnetic measurements reveal that the co-doped nanoparticles exhibit Room Temperature Ferromagnetism (RTFM). Copyright © 2018 VBRI Press.


1.L.E. Brus, J. Phys. Chem.;1984,80,4403.
2.Y. Wang, N. Herron, J. Phys. Chem.;1991,95,525.

3.N.A. Dhas, A. Zaban, A. Gedankan, Chem. Mater.;1999,11,

4.R. Vacassy, S.M. Scholz, J. Dutta, H. Hoffmann, C.J.G.
Plummer, G. Carrot, J. Hilborn, M. Akine, Mater. Res. Soc.
Symp. Proc.;1998,501,369.

5.P. Calandra, M. Goffred, V.T. Liveri, Colloids Surf. A 1999, 160,

6.O. Agyeman, C.N. Xu, M. Suzuki, X.G. Zhang, J. Mater. Res.

7.C.N. Xu, T. Watababe, M. Akiyama, X.G. Zhang, Appl. Phys.
Lett. 1999,74,1736.

8.Ashish K. Keshari, Avinash C. Pandey, J. Appl. Phys.2009, 105,

9.R.N. Bhargava, D. Gallagher, T. Welker, J. Lumin. 1994,275,

10.Y. Li, Y. Ding, Y. Zhang, Y. Qian, J. Phys. Chem. Solids, 1993,
60, 13.

11.J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Nano Lett.
2001, 1,42.

12.Hui Li, Y. Wan, Wei-Heng Shih, Nanotechnology2007, 18,

13.Mingwen Wang, Lingdong Sun, Xuefeng Fu, Chunsheng Liao,
Chunhua Yan, Solid State Comm.2000,115,493.

14.Ageeth A. Bol, Joke Ferwerda, Jaap A. Bergwerff, Andries
Meijerink, J. Lumin. 2002,99,325.

15.Rajesh Sharma, H.S. Bhatti, Nanotechnology 2007, 18, 465703.

16.Hemant Soni, Mukesh Chawda, Dhananjay Bodas, Mater. Lett.

17.Ageeth A. Bol, Rick van Beek, Andries Meijerink, Chem. Mater.

18.J.Z. Liu., P.X. Yan, G.H. Yue,J.B. Chang, D.M. Qu, R.F. Zhuo,
J. Phys. D: Appl. Phys.2006, 39,2352.

19.Kewei Liu, J.Y. Zhang, Xiaojie Wu, Binghui Li, Dezhen Shen,
Physica B 2007,389,248.

20.Ping Yang, Mengkai Lu, Dong Xu, Duorong Yuan, Chunfeng
Song, J. Phys. Chem. Solids2003, 64,155.

21.Subhajit Biswas, Soumitra Kar, Nanotechnology 2008, 19,

22.Sameer Sapra, J. Nanda, A. Anand, S.V. Bhat, D.D. Sarma, J.
Nanosci. Nanotech. 2003, 3,392.

23.B.D. Cullity, in: Elements of X-ray Diffraction, Addison-Wesley,
Reading, MA, 1978.

24.W. Chen, Z.G. Wang, Z.J. Lin, L.Y. Lin, J. Appl. Phys.1997, 82,

25.T. Arai, T. Yoshida, T. Ogawa, J. Appl. Phys.1987, 62,396.

26.M. Agata, H. Kurase, S. Hayashi, K. Yamamoto, Solid State
Commun. 1990,76,1061.

27..Huaming Yang, Chenghuan Huang, Xiaohui Su, and Aidong
Tang, Journal of Alloys and Compounds, 2005,402,1.

28.M. Ragam, N. Sankar, K. Ramachandran, Defect Diffus. For;
2011, 318,11.