International Association of Advanced Materials
  • Register
  • Login

Advanced Materials Proceedings

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 3, Issue 8
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Publication Ethics

Peer Review Process

News

Disclaimer

Diamond Open Access

Terms & Condition

Ag-TiO2 nanoparticles for photocatalytic degradation of sparfloxacin

    Raviraj M. Kulkarni Ramesh S. Malladi Manjunath S. Hanagadakar

Advanced Materials Proceedings, 2018, Volume 3, Issue 8, Pages 526-529
10.5185/amp.2018/7018

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

Liquid Impregnation (LI) technique was developed to prepare 1% and 2% Ag doped Titania nanoparticles. The characterization of the prepared nanoparticles was achieved by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and Transmission Electron Microscopy (TEM). The crystallite size was obtained by Scherrer equation analysis of XRD main peak of doped and undoped nanoparticles. It was observed  that crystallite size of bare TiO2 was 17.00 nm, whilst the crystallite size of 1% Ag doped titania and 2% Ag doped titania was 13.07 nm to 14.17 nm. TEM images ascertained that particle size of Ag-TiO2 nanoparticles were in the range 40-45 nm in length and 10-15 nm in width. The pH of the solution exerted a negative effect on photodegradation rate of sparfloxacin. The masking effect on the degradation of sparfloxacin was observed at higher catalyst dosages. The increase in UV intensity linearly enhanced the degradation rate of sparfloxacin and the influence of initial sparfloxacin concentration on the degradation rate was investigated and discussed. Copyright © 2018 VBRI Press.
Keywords:
    photocatalysis degradation sparfloxacin TiO2 doping
  • PDF (1079 K)
  • XML
(2021). Ag-TiO2 nanoparticles for photocatalytic degradation of sparfloxacin. Advanced Materials Proceedings, 3(8), 526-529. doi: 10.5185/amp.2018/7018
Raviraj M. Kulkarni; Ramesh S. Malladi; Manjunath S. Hanagadakar. "Ag-TiO2 nanoparticles for photocatalytic degradation of sparfloxacin". Advanced Materials Proceedings, 3, 8, 2021, 526-529. doi: 10.5185/amp.2018/7018
(2021). 'Ag-TiO2 nanoparticles for photocatalytic degradation of sparfloxacin', Advanced Materials Proceedings, 3(8), pp. 526-529. doi: 10.5185/amp.2018/7018
Ag-TiO2 nanoparticles for photocatalytic degradation of sparfloxacin. Advanced Materials Proceedings, 2021; 3(8): 526-529. doi: 10.5185/amp.2018/7018
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

1.Matthews, R. W; Water Res.,1991,251,1169.
DOI:10.1016/0043-1354(91)90054-T

2. Sharma, A.; Rao, P.; Mathur, R. P.; Ameta, Sj. C. A; J.
Photochem. Photobiol. A: Chem.,1995,86,197.

DOI:
10.1016/1010-6030(94)03933-L

3. Sakthivel, S.;Neppolian, B.; Shankar, M. V.; Arabindoo, B.;
Palanichamy, M.;Murugesan, V; Sol. Energy Mater. Sol. Cells.,
2003,77,65.

DOI:
10.1016/S0927-0248(02)00255-6
4.Linsebigler, A. L.; Lu, G. Q.;Yates, J. T; Chem. Rev.,1995, 95,
735.

DOI:
10.1021/cr00035a013
5.
Thompson, T. L.; Yates, J. T; Chem. Rev.,2006,106,4428.
DOI:
10.1021/cr050172k
6.
Pardeshi, S. K.; Patil, A. B; J. Mol. Catal. A: Chem.,2009,308,
32.

DOI:
10.1016/j.molcata.2009.03.023
7. Kudo, T.;Nakamura, Y.;Ruike, A; J. Catal. Today.,2007, 122,
14.

DOI:
10.1016/j.cattod.2007.01.058
8.Zayani, G.;Bousselmi, L.; Mhenni, F.; Ghrabi, A.; J.
Desalin.,2009.246,344.

DOI:
10.1016/j.desal.2008.03.059
9. Guillard, C.; Disdier, J.; Herrmann, J. M.; Lehaut, C.; Chopin,
T.; Malato, S.; Blanco, J; J. Catal. Today.,1999,54,217.

DOI:
10.1016/S0920-5861(99)00184-4
10.
Jodat, A.; Jodat, A.; Desalin. Water Treat.,2014,52,668.
DOI:
10.1080/19443994.2013.794115
11.
Yang, Y.;Li, X. J.; Chen, J.T.; Wang, L.Y; J. Photochem.
Photobiol. A. Chem.
,2004, 163,517.
DOI:
10.1016/j.jphotochem.2004.02.008
12.
Baiju, K.V.; Sibu, C.P.; Rajesh, K.; pillai, P.K.;Mukundan, P.;
Warrier,
K.G.K.; Wunderlich, W; Mater. Chem. Phys.,2005,
90,
123.
DOI:
10.1016/j.matchemphys.2004.10.024
13. Kormann, C.; Bahnemann, D.W.; Hoffmann, M.R; J.Phys.
Chem.,1988,92,5196.

DOI:
10.1021/j100329a027.
14. Lee, M.S.; Hong, S.S.; Mohseni, M; J. Mol. Catal. A.,2005,
242,135.

DOI:
10.1016/j.molcata.2005.07.038
15.
Guin, D.; Manorama, S.V.; Latha, J.N.L.; Singh, S; J. Phys.
Chem. C.
2007,111,13393.
DOI:
10.1021/jp072646k
16.
Kulkarni, R. M.; Malladi, R. S.; Hanagadakar,M. S.;
Doddamani,
M. R. ;Bhat.U. K; Desalin. Water Treat., 2016,
57,
16111.
DOI:10.1080/19443994.2015.1076352

17.
Ilyas, H.; Qazi,I. A.; Asgar, W.; Awan, M. A.; Khan,Z;J.
nanomate
.2011,2011, 1.
DOI:10.1155/2011/589185

  • Article View: 44
  • PDF Download: 21
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus