Authors
- Loreleyn F Flores 1
- Karem Y Tucto 1
- Jorge A Guerra 1
- Rolf Grieseler 1, 2
- Jan A Töfflinger 1
- Andres Osvet 3
- Miroslaw Batentschuk 3
- Roland Weingärtner 1
1 Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
2 Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany
3 Department of Material Science 6, University of Erlangen-Nuremberg, Martenstr. 6, Erlangen 91058, Germany
Abstract
Amorphous silicon oxycarbide (a-SiCxOy) single doped with Yb3+ and co-doped with the couple Tb3+ - Yb3+ thin films were grown on crystalline silicon substrates by rf magnetron sputtering. The elemental composition in at. % is determined by energy dispersive spectroscopy and fourier transform infrared spectroscopy allows to investigate the chemical properties of the host. The concentration of Yb in the single doped sample was 3.5% and for the codoped samples (Yb, Tb) were (3%, 0.9%), (3.5%, 0.6%) and (4%, 0.6%), respectively. Post-deposition annealing treatments were made in order to induce optical activation of the rare earths. Conversion or absorption of high energy photons were analyzed by photoluminescence spectroscopy. The photoluminescence spectra show that for a given temperature range in the thermal annealing process, as well as for the appropriate rare earth concentrations the activation of Yb3+ and Tb3+ is enhanced. A strong reduction of the Tb3+ emission in contrast to the Yb3+ emission in the a-SiCxOy,:Tb:Yb samples at annealing temperature at 500°C suggests a energy transfer from Tb3+ to Yb3+ ions. Copyright © 2018 VBRI Press.
Keywords
Phys. 2009, 11 (47), 11081.
DOI: 10.1039/b913877c
2.Huang, X.; Han, S.; Huang, W.; Liu, X. Chem. Soc. Rev. 2013, 42
(1), 173.
DOI: 10.1039/c2cs35288e
3.Dong, H.; Sun, L. D.; Yan, C. H. Chem Soc Rev 2015, 44 (6),
1608.
DOI: 10.1039/c4cs00188e
4.Wang, H. Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C. J.
Adv. Mater. 2011, 23 (22–23), 2675.
DOI: 10.1002/adma.201100511
5.Richards, B. S. Sol. Energy Mater. Sol. Cells 2006, 90 (9), 1189.
DOI: 10.1016/j.solmat.2005.07.001
6.Richards, B. S. Sol.Energy Mater. Sol. Cells 2006, 90 (15), 2329.
DOI: 10.1016/j.solmat.2006.03.035
7.De la Mora, M. B.; Amelines-Sarria, O.; Monroy, B. M.;
Hernández-Pérez, C. D.; Lugo, J. E. Sol. Energy Mater. Sol. Cells
2017, 165 (January), 59.
DOI: 10.1016/j.solmat.2017.02.016
8.Fu, L.; Xia, H.; Dong, Y.; Li, S.; Jiang, H.; Chen, B. IEEE
Photonics J. 2014, 6 (1).
DOI: 10.1109/JPHOT.2014.2300495
9.Dumont, L.; Cardin, J.; Benzo, P.; Carrada, M.; Labbé, C.;
Richard, A. L.; Ingram, D. C.; Jadwisienczak, W. M.; Gourbilleau,
F. Sol. Energy Mater. Sol. Cells 2016, 145, 84.
DOI: 10.1016/j.solmat.2015.09.031
10.Yuan, J.-L.; Zeng, X.-Y.; Zhao, J.-T.; Zhang, Z.-J.; Chen, H.-H.;
Yang, X.-X. J. Phys. D. Appl. Phys. 2008, 41 (10), 105406.
DOI: 10.1088/0022-3727/41/10/105406
11.Huang, X. Y.; Zhang, Q. Y. J. Appl. Phys. 2009, 105 (5), 5.
DOI: 10.1063/1.3088890
12.Duan, Q.; Qin, F.; Wang, D.; Xu, W.; Cheng, J.; Zhang, Z.; Cao,
W. J. Appl. Phys. 2011, 110 (11), 1.
DOI: 10.1063/1.3662916
13.Florêncio, L. de A.; Gómez-Malagón, L. A.; Lima, B. C.; Gomes,
A. S. L.; Garcia, J. A. M.; Kassab, L. R. P. Sol. Energy Mater. Sol.
Cells 2016, 157, 468.
DOI: 10.1016/j.solmat.2016.07.024
14.An, Y.-T.; Labbé, C.; Cardin, J.; Morales, M.; Gourbilleau, F. Adv.
Opt. Mater. 2013, 1 (11), 855.
DOI: 10.1002/adom.201300186
Grieseler, R.; Osvet, A.; Batentschuk, M.; Weingärtner, R. MRS
Adv. © 2017 Mater. Res. Soc. 2017, 3, 4,
DOI: 10.1557/adv.2017
16.Pantano, C. G.; Pantano, C. G.; Singh, A. K.; Singh, A. K.; Zhang,
H.; Zhang, H. J. Sol-Gel Sci. Technol. 1999, 14, 7.
DOI: 10.1023/A:1008765829012
17.Shevchuk, S. L.; Maishev, Y. P. Thin Solid Films 2005, 492 (1–2),
114.
DOI: 10.1016/j.tsf.2005.06.086
18.Memon, F. A.; Morichetti, F.; Abro, M. I.; Iseni, G.; Somaschini,
C.; Aftab, U.; Melloni, A. EPJ Web Conf. 2017, 139, 0.
DOI: 10.1051/epjconf/201713900002
19.Nikas, V.; Gallis, S.; Huang, M.; Kaloyeros, A. E.; Nguyen, A. P.
D.; Stesmans, A.; Afanas’Ev, V. V. Appl. Phys. Lett. 2014, 104
(6), 6.
DOI: 10.1063/1.4865100
20.Lin, Z.; Guo, Y.; Song, C.; Song, J.; Wang, X.; Zhang, Y.; Huang,
R.; Huang, X. J. Alloys Compd. 2015, 633, 153.
DOI: 10.1016/j.jallcom.2015.02.027
21.Tessler, L. R.; Solomon, I. Phys. Rev. B 1995, 52 (15), 10962.
DOI: 10.1103/PhysRevB.52.10962
22.Boninelli, S.; Bellocchi, G.; Franzò, G.; Miritello, M.; Iacona, F. J.
Appl. Phys. 2013, 113 (14).
DOI: 10.1063/1.4799407
23.Bellocchi, G.; Franzò, G.; Boninelli, S.; Miritello, M.; Cesca, T.;
Iacona, F.; Priolo, F. IOP Conf. Ser. Mater. Sci. Eng. 2014, 56,
12009.
DOI: 10.1088/1757-899X/56/1/012009
24.Gallis, S.; Huang, M.; Efstathiadis, H.; Eisenbraun, E.; Kaloyeros,
A. E.; Nyein, E. E.; Hommerich, U. Appl. Phys. Lett.2005, 87 (9),
7.
DOI: 10.1063/1.2032600
25.Gallis, S.; Huang, M.; Kaloyeros, A. E. Appl. Phys. Lett. 2007, 90
(16), 19.
DOI: 10.1063/1.2730583
26.Nikas, V.; Gallis, S.; Huang, M.; Kaloyeros, A. E. J. Appl. Phys.
2011, 109 (9).
DOI: 10.1063/1.3582090
27.Gálvez De La Puente, G.; Guerra Torres, J. A.; Erlenbach, O.;
Steidl, M.; Weingärtner, R.; De Zela, F.; Winnacker, A. Mater. Sci.
Eng. B Solid-State Mater. Adv. Technol. 2010, 174 (1–3), 127.
DOI: 10.1016/j.mseb.2010.03.012
28.Bickermann, M.; Hofmann, D.; Rasp, M.; Straubinger, T. L.;
Weingärtner, R.; Wellmann, P. J.; Winnacker, A. In Materials
Science Forum; 2001; Vol. 353–356, 49.
29.Tucto Salinas, K. Y.; Flores Escalante, L. F.; Guerra Torres, J. A.;
Grieseler, R.; Kups, T.; Pezoldt, J.; Osvet, A.; Batentschuk, M.;
Weingärtner, R. Mater. Sci. Forum 2017, 890 (Cl), 299.
DOI: 10.4028/www.scientific.net/MSF.890.299
30.Gallis, S.; Nikas, V.; Huang, M.; Eisenbraun, E.; Kaloyeros, A. E.
J. Appl. Phys. 2007, 102 (2).
DOI: 10.1063/1.2753572
31.Guerra, J. A.; De Zela, F.; Tucto, K.; Montañez, L.; Töfflinger, J.
A.; Winnacker, A.; Weingärtner, R. J. Phys. D. Appl. Phys. 2016,
49 (37), 375104.
DOI: 10.1088/0022-3727/49/37/375104
32.Guerra, J. A.; Benz, F.; Zanatta, A. R.; Strunk,H. P.; Winnacker,
A.; Weing??rtner, R. Phys. Status Solidi Curr. Top. Solid State
Phys. 2013, 10 (1), 68.
DOI: 10.1002/pssc.201200394
33.Lin, Z.; Guo, Y.; Song, J.; Zhang, Y.; Song, C.; Wang, X.; Huang,
R. J. Non. Cryst. Solids 2015, 428, 184.
DOI: 10.1016/j.jnoncrysol.2015