Authors

Electrical Engineering Department, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan.

Abstract

Reduction of optical reflection loss at the intermediate region is discussed in three mechanical stacked samples: top Si and bottom Ge substrates, top GaAs and bottom Si substrates, and top GaP and bottom Si substrates using an epoxy-type adhesive with a reflective index of 1.47. Transparent conductive Indium gallium zinc oxide (IGZO) layers with a refractive index of 1.85 were used as antireflection layers. IGZO layers were formed on the bottom surface of the top substrate and the top surface of the bottom substrate of the three stacked samples with thicknesses of 188, 130, and 102 nm. The IGZO layers well decreased the optical reflectivity of the stacked samples. The IGZO layers provided high effective optical absorbency Aeff of bottom substrates of 0.925, 0.943, and 0.931, respectively, for light wavelength regions for light in which the top substrates were transparent and the bottom substrates were opaque. High Aeff maintained for the light incident angle between 0 to 50o. Copyright © 2018 VBRI Press.

Keywords

1.Shockley, W.; Queisser, H.J.; J. Appl. Phys., 1961, 32, 510.
DOI:10.1063/1.1736034

2.Zhao, J.; Wang, A.; Green, M.A.; Appl. Phys.Lett., 1998, 73, 1991.

DOI:10.1063/1.1122345

3.Shah, A. V.; Schade, H.; Vanecek, M.; Meier, J.;Vallat-Sauvain, E.;
Wyrsch, N.;Kroll, U.;Droz, C.;Bailat, J.; Photovoltaics, 2004, 12,
113.DOI:10.1002/pip.533

4.Sugiura, H.; Amano, C.; Yamamoto, A.; Yamaguchi, M; Jpn. J.
Appl. Phys., 1988, 27, 269.DOI:10.1143/JJAP.27.269

5.Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Faine, P; Appl. Phys. Lett.,
1990, 56, 623.DOI:10.1063/1.102717

6.Takamoto, T.; Ikeda, E.; Kurita, H.; Ohmori, M.; Yamaguchi, M.;
Yang, M. J.;Jpn. J. Appl. Phys., 1997, 36, 6215.

DOI:10.1143/JJAP.36.6215

7.Yamaguchi,M.; PhysicaE, 2002, 14, 84.

DOI:10.1016/S1386-9477(02)00362-4

8.King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey,
G. S.;Yoon, H.;Sherif, R. A.; Karam, N. H.; Appl. Phys. Lett., 2007,
90, 183516.

DOI:10.1063/1.2734507

9.Shahrjerdi, D.; Bedell, S.W.; Ebert, C.; Bayram, C.; Hekmatshoar,
B.;Fogel, K.;Lauro, P.;Gaynes, M.;Gokmen, T.;Ott, A.;Sadana,
D.K.;Appl. Phys. Lett., 2012, 100, 053901.

DOI:10.1063/1.3681397

10.Mizuno, H.; Makita, K.; Matsubara, K.; Appl. Phys. Lett., 2012, 101,
191111.

DOI:10.1063/1.4766339

11.Steiner, M.A.; Geisz, J.F.; Ward, J. S.; García, I.;Friedman, D.J.;
King, R. R.;Chiu, R. T.;France, R. M.;Duda, A.;Olavarria, W. J.;
Young, M.;Kurz, S. R.;IEEE J. Photovoltaics, 2016, 6, 358.

DOI:10.1109/JPHOTOV.2015.2494690

12.Wenger, S.; Seyrling, S.; Tiwari, A. N.; Grätzel, M.; Appl. Phys.
Lett., 2009, 94, 173508.

DOI:10.1063/1.3125432

13 Sameshima, T.; Takenezawa, J.; Hasumi, M.; Koida, T.;Kaneko, T.;
Karasawa, M.;Kondo, M.;Jpn. J. Appl. Phys., 2011, 50, 052301.

DOI:10.1143/JJAP.50.052301

14 Yoshidomi, S.; Furukawa, J.; Hasumi, M.; Sameshima, T.;Energy
Procedia, 2014, 60, 116.

DOI:10.1016/j.egypro.2014.12.352

15. Sameshima, T.; Nimura, T.; Sugawara, T.; Ogawa, Y.;Yoshidomi,
S.;Kimura, S.;Hasumi, M.;Jpn. J. Appl. Phys., 2017, 56, 012602.

DOI:10.7567/JJAP.56.012602

16.Yoshidomi, S.; Kimura, S.; Hasumi, M.; Sameshima, T.;Jpn. J.
Appl. Phys., 2015, 54, 112301.

DOI:10.7567/JJAP.54.112301

17.Palik, E.D.; Handbook of Optical Constants of Solids; Academic
Press: USA,1985.Subpart 2.

18.Sameshima, T.; Saitoh, K.; Sato, M.; Tajima, A.;Takashima, N.;
Jpn. J. Appl. Phys., 1997, 36, 1360.

DOI:10.1143/JJAP.36.L1360