Author

Department of Mechanical Engineering, Brawijaya University, Jl. Mayjen Haryono 167, Malang, 65145, Indonesia

Abstract

This study aims to utilize of bio material to produce green hydrogen energy through hybrid of the activated carbon and the CuO catalyst in vegetable oil steam reformer. The experiment was done in the atmospheric pressure steam reformer. The results show that activated carbon and CuO individually performs the same trend in producing hydrogen. Their combination accelerates hydrogen production. This indicates that heat energy makes CuO alters the electron density around the reactant by combining the van der Waals force with the induction due to electron jump in its narrow ban gap. Therefore, CuO activate effectively the polar water (H2O) molecules. More energy is needed to alter the electron in stable large molecule triglyceride of vegetable oil. On the other hand, the activated carbon does it by combining the van der Waals force with the induction due to delocalized of the pi electrons travelling between carbon atoms in the graphite structure. Consequently, only the nonpolar triglyceride molecules are attracted while the polar H2O are repelled by hydrophobic force. Thus, larger energy is needed to activate electrons in H2O.  When they are combined, the CuO works only on H2O while activated carbon does only on triglyceride which is highly effective. Copyright © 2018 VBRI Press.

Keywords

1.Farrauto,R.;Hwang,S.;Shore,L.;Ruettinger,W.;Lampert,J.;
Giroux,T.;Liu,Y.;Ilinich,O.;Annual Review of Materials
Research, 2003, 33, 1.

DOI:
10.1146/annurev.matsci.33.022802.091348
2.King,D.L.;Brooks, K.P.;Fischer,C.M.;Pederson, L.;Rawlings,
G.;Stenkamp,S.V.;TeGrotenhuis,W.;Wegeng, R.;Whyatt,G.A.
Fuel Reformation: Catalyst Requirements in Microchannel
Architectures, inMicroreactor Technology and Process
Intensification;Wang, Y.;Holladay,J.D. (Eds.), ACS: USA, 2005,
pp. 119-128.

DOI:
10.1021/bk-2005-0914.pr001
3.Holladay, J.D.; Hu, J.;King, D.L.;Wang,Y.;Catal. Today, 2009,
139, 244.

DOI:10.1016/j.cattod.2008.08.039

4.Domine,M. E.;Iojoiu,E. E.;Davidian,T.;Guilhaume,N.;
Mirodatos,C.;Catalysis Today,2008, 133, 565.

DOI:10.1016/j.cattod.2007.12.062

5.Wang
,Y.F.;Tsai,C.H.;Chang,W.Y.;KuoY.M.;Int. J.
Hydrogen Energy, 2010,
35, 135.
DOI:
10.1016/j.ijhydene.2009.10.088
6.Rioche, C.;Kulkarni,S.;Meunier,F.C.;Breen,J.P.;Burch,R.;
Appl. Catal. B:Environ., 2005, 61,130.

DOI:
10.1016/j.apcatb.2005.04.015
7.Marban,G.;Valdes-Solis T.; Int. J. Hydrogen Energy,2007, 32,
1625.

DOI:
10.1016/j.ijhydene.2006.12.017
8.Pompeo
,F.;Santori,G.;NichioN. N.;Int. J. Hydrogen Energy,
2010, 35, 8912.

DOI:
10.1016/j.ijhydene.2010.06.011
9.Wen,G.;
Xu,Y.;Ma,H.;Xu,Z.;and Tian,Z.;Int. J. Hydrogen
Energy,2010, 33, 6657.DOI:
10.1016/j.ijhydene.2008.07.072
10.
Wang,X.;Wang,N.;Li,M.;Li,S.;Wang,S.;and Ma, X.; Int.
J. Hydrogen Energy,2010, 35, 10252.

DOI:
10.1016/j.ijhydene.2010.07.140
11.Authayanun
,S.;Arpornwichanop,A.;Patcharavorachot,Y.;
Wiyaratn
,W.;and Assabumrungrat,S.;Int. J. Hydrogen Energy,
2011,36, 267.

DOI:
10.1016/j.ijhydene.2010.10.061
12.Thormann
,J.;Maier,L.;Pfeifer,P.;Kunz,U.;Deutschmann,O.;
Schubert
,K.;Int. J. Hydrogen Energy, 2009, 34, 5108.
DOI:
10.1016/j.ijhydene.2009.04.031
13.Wardana,I.N.G.;Fuel, 2010, 89, 659.

DOI:
10.1016/j.fuel.2009.07.002
14.Purnami,P.;Wardana,I.N.G.;Veronika,K.;Jurnal Rekayasa
Mesin, 2015,6, 51.

DOI:
10.21776/ub.jrm.2015.006.01.8
15.Marsh, H.;and Reinoso, F. R.(Eds.); Activated Carbon; Elsevier
Scienceand Technology:2006.

16.Neamen, D. A.(Eds); Semiconductor Physics and Devices, Basic
Principles;McGraw-Hill: USA, 2003

17.Parcerisa, J.; Richardson, D. G.; Rafecas, M.; Codony, R.; and
Boatella, J.; J. Agric. Food Chem.,1997, 45, 3887.

DOI:
10.1021/jf9703112
18.
Thomas,K. M.; Catalyst Today,2007, 120, 389.
DOI:
10.1016/j.cattod.2006.09.015
19.
Mateos-Pedrero, C.; Silva,H.; Tanaka,D.A.P.; Liguori,S.;
Iulianelli, A.; Basile, A.; Mendes, A.; Applied Catalysis B:
Environmental, 2015, 174,67

DOI:
10.1016/j.apcatb.2015.02.039
20.Chinchen, G.C.; Waugh, K.C.;Appl. Catal.1986,25, 101.
DOI:
10.1016/S0166-9834(00)81226-9
21.Yong, S.T.;Ooi, C.W.;Chai, S.P.;Wu, X.S.;Int. J. Hydrogen
Energy,2013, 38, 9541.

DOI:
10.1016/j.ijhydene.2013.03.023
22.Spencer, M.S.;Top. Catal, 1999,8,259.

DOI:
10.1023/A:1019181715731
23.Berens, M.;Studt, F.;Kasatkin, I.;Kuhl, S.;Havecker, M.;Abild-
Pedersen, F.; Zander, S.;Girgsdies, F.;Kurr, P.;Kniep, B.L.;
Tovar, M.;Fischer, R.W.;Nørskov, J.K.;Schlogl, R.;Science,
2012, 336,893. DOI:10.1126/science.1219831

24.Kanai, Y.;Watanabe, T.;Fujitani, T.;Uchijima, T.; Nakamura, J.;
Catal. Lett.,1996,38,157.

DOI:
10.1007/BF00806562